Red Monascus Pigment (RMP), a natural pigment, has attracted significant attention due to its suitability for food use and potential health benefits. However, preserving its stability and exploring value-added development opportunities remain crucial challenges. This study outlined the utilization of RMP, by successfully preparing hydrogel beads encapsulating RMP crude extract (RMPCE) through Ca2+-mediated chitosan (CS)/sodium alginate (SA) encapsulation (CO-RMPHB). A systematic investigation into the fabrication and stability parameters, including preparation conditions, temperature, monochromatic light and storage time, was undertaken. Through optimization (SA: 2.50 wt%; CaCl2: 6.00 wt%; CS: 0.50 wt%), maximum encapsulation efficiency of 73.54 ± 2.16 % was achieved. The maximum swelling degree of blank hydrogel beads (BHB) in simulated gastric solution (pH = 1.2, 1.50 ± 0.97 %) was significantly lower than in simulated intestinal solution (pH = 7.0, 28.05 ± 1.43 %), confirming their sensitivity to pH changes. Additionally, the CO-RMPHB (66.08 %, 1000 μL) exhibited superior DPPH radical scavenging capability compared to individual RMPCE or BHB. Furthermore, analysis of the release kinetics based on zero-order, first-order, Higuchi, and Ritger-Peppas models revealed that RMPCE release from CO-RMPHB under in vitro digestion models followed non-Fickian diffusion. This discovery effectively addresses the challenges of the stability and controlled release of RMP, expanding its applications in the food and pharmaceutical industries.