已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Pore-scale experimental investigation of the fluid flow effects on methane hydrate formation

水合物 甲烷 结晶 亚稳态 化学物理 笼状水合物 化学 成核 化学工程 材料科学 热力学 纳米技术 有机化学 物理 工程类
作者
Rui Xu,Xuan Kou,Tianwei Wu,Xiao‐Sen Li,Yi Wang
出处
期刊:Energy [Elsevier BV]
卷期号:271: 126967-126967 被引量:20
标识
DOI:10.1016/j.energy.2023.126967
摘要

Methane hydrates (MHs) formation involves the crystallization process of a hybrid system between methane and water. Former studies focus more on macroscopic but lack of visualization and temporal resolution, therefore, microfluidic device was used in this paper. Similar to the icing process, with the influence of supercooling effect, the hybrid system can be easily trapped in a metastable state. Under this circumstance, crystallization between methane and water molecules will not easily appear spontaneously, significantly extending the induction time. Therefore, artificial approaches are needed during the hydrate formation processes. In this work, based on microfluidic chips, a high-pressure visible device was designed and 2 kinds of perturbation methods were employed during the experiments. Both methods caused disturbance to the hybrid system, breaking the metastable state and achieving hydrate formation inside the microfluidic chips of the different pore structures. The results showed that hydrate formation in microfluidic chips require phase equilibrium state and perturbation in the regions with crystal nuclei. Perturbation was needed in hydrate formation under microfluidic chips and disturbance caused by constant pressure flow in the random pore structure is the most effective method. The repeated movement of methane-water phase played a significant role in the hydrate reformation process. Due to the heat conduction of hydrate formation and dissociation, the movements of the methane phase, water phase, and hydrate phase repeatedly appeared in the pore structure, and this behavior inside the pores directly caused hydrate reformation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anyu完成签到,获得积分10
刚刚
今后应助Luca采纳,获得10
1秒前
1秒前
上岸的咸鱼完成签到,获得积分20
2秒前
热心的十二完成签到 ,获得积分10
4秒前
5秒前
5秒前
充电宝应助1234567采纳,获得10
5秒前
打打应助自由的松采纳,获得10
6秒前
要减肥完成签到,获得积分10
7秒前
xuliangzheng发布了新的文献求助30
7秒前
思源应助congyjs采纳,获得10
7秒前
春风不语完成签到 ,获得积分10
7秒前
舒心寒天完成签到,获得积分10
9秒前
自渡完成签到 ,获得积分10
9秒前
搜集达人应助自由的蜗牛采纳,获得30
10秒前
任性凤凰发布了新的文献求助10
10秒前
12秒前
chen完成签到,获得积分10
13秒前
忧心的硬币应助Billy采纳,获得269
14秒前
congyjs完成签到,获得积分10
16秒前
shinn发布了新的文献求助10
16秒前
tang完成签到,获得积分10
19秒前
科研通AI5应助WX采纳,获得10
20秒前
21秒前
Coraline应助zheng-homes采纳,获得10
23秒前
1234567完成签到,获得积分10
23秒前
科研通AI5应助leclare采纳,获得10
24秒前
笔墨今宵完成签到,获得积分10
24秒前
所所应助Yen采纳,获得10
25秒前
1234567发布了新的文献求助10
25秒前
26秒前
26秒前
李家静完成签到 ,获得积分10
27秒前
冰棒比冰冰完成签到 ,获得积分10
28秒前
30秒前
小马甲应助shinn采纳,获得20
30秒前
背后如雪发布了新的文献求助10
30秒前
31秒前
情怀应助笨笨善若采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968054
求助须知:如何正确求助?哪些是违规求助? 3513070
关于积分的说明 11166315
捐赠科研通 3248263
什么是DOI,文献DOI怎么找? 1794163
邀请新用户注册赠送积分活动 874892
科研通“疑难数据库(出版商)”最低求助积分说明 804626