Experimental and 3D Numerical Investigation on Proppant Distribution in a Perforation Cluster Involving the Artificial Neural Network Prediction

穿孔 机械 石油工程 计算流体力学 惯性 离散元法 流体力学 压裂液 地质学 材料科学 工程类 机械工程 物理 经典力学 冲孔
作者
Hai Qu,Xiangjun Chen,Jun Hong,Yang Xu,Chengying Li,Zhelun Li,Ying Liu
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:28 (04): 1650-1675 被引量:5
标识
DOI:10.2118/214316-pa
摘要

Summary Uniform proppant distribution in a cluster and a stage with multiple clusters is a primary objective to optimize fracturing parameters and improve the production from each cluster. Because fracturing slurry is typically pumped at high pressure and rate in fields, it is a big challenge to study proppant transport behavior and distribution characteristics through laboratory experiments. There is still a lack of an effective model to quantitatively evaluate proppant distribution based on an actual wellbore configuration. The objective is to propose a novel method to accurately evaluate the distribution uniformity and quickly optimize fracturing parameters based on field conditions. This paper conducts particle transport experiments in a horizontal pipe with six holes at the helical distribution. A 3D numerical model coupling of the computational fluid dynamics (CFD) and discrete element method (DEM) is used to study proppant distribution. Proppant distribution is quantitatively evaluated by the proppant transport efficiency (E) and normalized standard deviation (NSD). The effects of 10 parameters are investigated. An artificial neural network (ANN) model is developed to predict proppant distribution in a cluster. The results identify that proppant distribution among perforations is generally toe-biased in a horizontal wellbore due to a high pumping rate. Proppants with large inertia easily miss the heel-side holes and are suspended to the toe side. The complex vorticity flow carries them to the toe-side perforation regardless of hole orientation. Fluid distribution can significantly change proppant distribution regardless of fluid velocity. The heel-biased fluid distribution leads to the same bias of proppant, and the downward perforations receive more proppants. Proppant transport reaches equilibrium quickly, and the distribution is hard to change unless the injection condition varies. It is a good choice to increase fluid viscosity, add perforation sealers, and inject small mesh proppant, especially for the low density. The ANN model trained by extensive experimental and numerical samples can accurately evaluate proppant distribution uniformity. The study provides an efficient way to optimize injection parameter design and achieve real-time optimization coupled with the fiber-optic downhole diagnostic. It can be a crucial part of artificial intelligence hydraulic fracturing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小遇完成签到 ,获得积分10
刚刚
悠悠发布了新的文献求助10
1秒前
MMMV完成签到,获得积分10
2秒前
5秒前
小蘑菇应助高挑的迎夏采纳,获得10
5秒前
tannie完成签到 ,获得积分0
6秒前
隐形珊完成签到,获得积分10
8秒前
希望天下0贩的0应助niniyiya采纳,获得10
8秒前
9秒前
9秒前
10秒前
Orange应助圈圈采纳,获得10
12秒前
aa完成签到,获得积分10
13秒前
愉快若剑发布了新的文献求助10
14秒前
Godlove发布了新的文献求助10
14秒前
kkk发布了新的文献求助10
15秒前
17秒前
酷波er应助方法采纳,获得10
18秒前
19秒前
Godlove完成签到,获得积分10
20秒前
20秒前
打打应助kkk采纳,获得10
21秒前
Jared应助小鱼头采纳,获得10
22秒前
23秒前
飞快的孱完成签到,获得积分10
25秒前
李爱国应助慕木采纳,获得10
25秒前
fengfeng发布了新的文献求助10
26秒前
psg完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
浮游应助求神拜佛采纳,获得10
28秒前
浮游应助求神拜佛采纳,获得10
28秒前
28秒前
sdfgv发布了新的文献求助10
30秒前
加菲丰丰举报外向的灵槐求助涉嫌违规
30秒前
完美世界应助百宝采纳,获得10
31秒前
高挑的迎夏完成签到,获得积分10
34秒前
Chris发布了新的文献求助10
35秒前
yiteng完成签到,获得积分10
35秒前
36秒前
Owen应助落寞的新晴采纳,获得10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633720
求助须知:如何正确求助?哪些是违规求助? 4729357
关于积分的说明 14986552
捐赠科研通 4791560
什么是DOI,文献DOI怎么找? 2558957
邀请新用户注册赠送积分活动 1519405
关于科研通互助平台的介绍 1479650