Experimental and 3D Numerical Investigation on Proppant Distribution in a Perforation Cluster Involving the Artificial Neural Network Prediction

穿孔 机械 石油工程 计算流体力学 惯性 离散元法 流体力学 压裂液 地质学 材料科学 工程类 机械工程 物理 经典力学 冲孔
作者
Hai Qu,Xiangjun Chen,Jun Hong,Yang Xu,Chengying Li,Zhelun Li,Ying Liu
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:28 (04): 1650-1675 被引量:5
标识
DOI:10.2118/214316-pa
摘要

Summary Uniform proppant distribution in a cluster and a stage with multiple clusters is a primary objective to optimize fracturing parameters and improve the production from each cluster. Because fracturing slurry is typically pumped at high pressure and rate in fields, it is a big challenge to study proppant transport behavior and distribution characteristics through laboratory experiments. There is still a lack of an effective model to quantitatively evaluate proppant distribution based on an actual wellbore configuration. The objective is to propose a novel method to accurately evaluate the distribution uniformity and quickly optimize fracturing parameters based on field conditions. This paper conducts particle transport experiments in a horizontal pipe with six holes at the helical distribution. A 3D numerical model coupling of the computational fluid dynamics (CFD) and discrete element method (DEM) is used to study proppant distribution. Proppant distribution is quantitatively evaluated by the proppant transport efficiency (E) and normalized standard deviation (NSD). The effects of 10 parameters are investigated. An artificial neural network (ANN) model is developed to predict proppant distribution in a cluster. The results identify that proppant distribution among perforations is generally toe-biased in a horizontal wellbore due to a high pumping rate. Proppants with large inertia easily miss the heel-side holes and are suspended to the toe side. The complex vorticity flow carries them to the toe-side perforation regardless of hole orientation. Fluid distribution can significantly change proppant distribution regardless of fluid velocity. The heel-biased fluid distribution leads to the same bias of proppant, and the downward perforations receive more proppants. Proppant transport reaches equilibrium quickly, and the distribution is hard to change unless the injection condition varies. It is a good choice to increase fluid viscosity, add perforation sealers, and inject small mesh proppant, especially for the low density. The ANN model trained by extensive experimental and numerical samples can accurately evaluate proppant distribution uniformity. The study provides an efficient way to optimize injection parameter design and achieve real-time optimization coupled with the fiber-optic downhole diagnostic. It can be a crucial part of artificial intelligence hydraulic fracturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白发布了新的文献求助10
刚刚
机灵又蓝完成签到 ,获得积分10
刚刚
xiaxiao应助旧梦如烟采纳,获得100
刚刚
111发布了新的文献求助10
刚刚
1秒前
2秒前
rstorz完成签到,获得积分10
2秒前
wzxxxx发布了新的文献求助10
3秒前
方方方方神完成签到,获得积分20
3秒前
WiLDPiG433完成签到,获得积分10
3秒前
4秒前
Jasper应助椰子采纳,获得10
4秒前
Stormi发布了新的文献求助10
4秒前
jym发布了新的文献求助10
4秒前
4秒前
Maigret完成签到,获得积分10
5秒前
两飞飞完成签到,获得积分10
5秒前
5秒前
韭菜盒子发布了新的文献求助10
6秒前
ximu完成签到,获得积分20
6秒前
CLN完成签到,获得积分10
6秒前
SciGPT应助单薄凌蝶采纳,获得50
7秒前
7秒前
111完成签到,获得积分10
7秒前
小马甲应助117采纳,获得10
7秒前
甜甜的猫咪完成签到,获得积分10
7秒前
7秒前
66应助马佳凯采纳,获得10
7秒前
8秒前
是述不是沭完成签到,获得积分10
8秒前
9秒前
lei完成签到,获得积分10
9秒前
瘦瘦的背包完成签到,获得积分10
10秒前
10秒前
赘婿应助Elaine采纳,获得10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
科研小白完成签到,获得积分10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740