Revealing multiple strengthening transitions in crystalline-amorphous nanolaminates through molecular dynamics

材料科学 无定形固体 纳米压痕 复合材料 剪切矩阵 位错 打滑(空气动力学) 剪切带 剪切(地质) 结晶学 非晶态金属 化学 物理 合金 热力学
作者
Fei Shuang,Bo Wang,Katerina E. Aifantis
出处
期刊:Materials today communications [Elsevier BV]
卷期号:35: 105675-105675 被引量:3
标识
DOI:10.1016/j.mtcomm.2023.105675
摘要

Crystalline-amorphous nanolaminates allow for a unique combination of high strength and good ductility. This promising mechanical behavior is attributed to the different deformation mechanisms that occur in the crystalline and amorphous layers, however, a mechanistic understanding of the plastic strain transmission among these layers does not exist. In the present study a new nanoindentation configuration is employed that allows for the continuous emission of a pair of edge dislocations in the same slip planes as plastic sources, revealing the different interaction mechanisms between dislocations and amorphous layers of varying thickness. This allows to study the transmission of plastic strain from the crystalline to amorphous, and amorphous to crystalline layers. It is shown that the thickness of the amorphous layer controls the deformation mechanism, since thin amorphous layers act as obstacles to dislocation motion, while thick ones as dislocation sinks. As a result, more shear transformation zones and mature shear bands form in the amorphous layer, but less dislocations are nucleated in the lower crystalline layer as its thickness increases. These findings can be used to guide the design of crystalline-amorphous nanolaminates with desirable mechanical properties by precisely controlling the thickness of the amorphous layer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
高贵从寒发布了新的文献求助10
1秒前
1秒前
JulieDavy发布了新的文献求助20
1秒前
可爱的函函应助Yu采纳,获得10
2秒前
一一一发布了新的文献求助10
2秒前
顾矜应助lebron采纳,获得10
2秒前
ruby发布了新的文献求助10
3秒前
科研通AI5应助看不懂采纳,获得10
3秒前
3秒前
4秒前
起个名不麻烦完成签到 ,获得积分10
4秒前
Gate完成签到,获得积分10
5秒前
呆熊发布了新的文献求助10
5秒前
marjorie发布了新的文献求助10
5秒前
沉静柚子发布了新的文献求助10
6秒前
brave完成签到 ,获得积分10
6秒前
skf发布了新的文献求助10
6秒前
6秒前
guojingjing发布了新的文献求助10
6秒前
三石完成签到,获得积分10
7秒前
7秒前
8秒前
核桃应助zhou_nuo采纳,获得10
8秒前
9秒前
orixero应助穆头呼橹橹采纳,获得10
9秒前
冯先森ya完成签到,获得积分10
9秒前
10秒前
Shaw发布了新的文献求助10
10秒前
霸气小懒虫完成签到,获得积分20
11秒前
11秒前
情怀应助呆熊采纳,获得10
11秒前
wanci应助忧郁的白竹采纳,获得10
12秒前
12秒前
12秒前
13秒前
兰真纯洁发布了新的文献求助10
13秒前
13秒前
哲别发布了新的文献求助10
13秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206480
求助须知:如何正确求助?哪些是违规求助? 4384909
关于积分的说明 13654925
捐赠科研通 4243191
什么是DOI,文献DOI怎么找? 2327972
邀请新用户注册赠送积分活动 1325674
关于科研通互助平台的介绍 1277765