Risk factor identification and prediction models for prolonged length of stay in hospital after acute ischemic stroke using artificial neural networks

人工神经网络 缺血性中风 医学 冲程(发动机) 鉴定(生物学) 急诊医学 风险因素 重症监护医学 人工智能 机器学习 心脏病学 内科学 计算机科学 缺血 工程类 生物 机械工程 植物
作者
Cheng‐Chang Yang,Oluwaseun Adebayo Bamodu,Lung Chan,Jia‐Hung Chen,Chien‐Tai Hong,Yi-Ting Huang,Chen‐Chih Chung
出处
期刊:Frontiers in Neurology [Frontiers Media]
卷期号:14 被引量:14
标识
DOI:10.3389/fneur.2023.1085178
摘要

Accurate estimation of prolonged length of hospital stay after acute ischemic stroke provides crucial information on medical expenditure and subsequent disposition. This study used artificial neural networks to identify risk factors and build prediction models for a prolonged length of stay based on parameters at the time of hospitalization.We retrieved the medical records of patients who received acute ischemic stroke diagnoses and were treated at a stroke center between January 2016 and June 2020, and a retrospective analysis of these data was performed. Prolonged length of stay was defined as a hospital stay longer than the median number of days. We applied artificial neural networks to derive prediction models using parameters associated with the length of stay that was collected at admission, and a sensitivity analysis was performed to assess the effect of each predictor. We applied 5-fold cross-validation and used the validation set to evaluate the classification performance of the artificial neural network models.Overall, 2,240 patients were enrolled in this study. The median length of hospital stay was 9 days. A total of 1,101 patients (49.2%) had a prolonged hospital stay. A prolonged length of stay is associated with worse neurological outcomes at discharge. Univariate analysis identified 14 baseline parameters associated with prolonged length of stay, and with these parameters as input, the artificial neural network model achieved training and validation areas under the curve of 0.808 and 0.788, respectively. The mean accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of prediction models were 74.5, 74.9, 74.2, 75.2, and 73.9%, respectively. The key factors associated with prolonged length of stay were National Institutes of Health Stroke Scale scores at admission, atrial fibrillation, receiving thrombolytic therapy, history of hypertension, diabetes, and previous stroke.The artificial neural network model achieved adequate discriminative power for predicting prolonged length of stay after acute ischemic stroke and identified crucial factors associated with a prolonged hospital stay. The proposed model can assist in clinically assessing the risk of prolonged hospitalization, informing decision-making, and developing individualized medical care plans for patients with acute ischemic stroke.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助dsa采纳,获得10
刚刚
现代柜子发布了新的文献求助40
1秒前
潇洒的奇异果完成签到,获得积分10
1秒前
CCC完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助chuyinweilai采纳,获得10
2秒前
大龙哥886应助hp571采纳,获得10
3秒前
sunnyAM3发布了新的文献求助10
3秒前
星期八发布了新的文献求助10
4秒前
共享精神应助滕擎采纳,获得10
4秒前
活力白易发布了新的文献求助10
4秒前
同玉完成签到,获得积分10
4秒前
在水一方应助11446采纳,获得10
4秒前
Ava应助小马采纳,获得10
5秒前
思源应助22鱼采纳,获得10
5秒前
5秒前
星辰大海应助N1koooooo采纳,获得10
5秒前
云云完成签到,获得积分10
5秒前
5秒前
鲜艳的从波完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
包容浩宇发布了新的文献求助10
7秒前
8秒前
乐乐应助joysa采纳,获得10
8秒前
Y.Wang发布了新的文献求助10
8秒前
8秒前
tz完成签到,获得积分10
9秒前
丘比特应助caofan采纳,获得10
9秒前
9秒前
9秒前
小马甲应助ZYLZYL采纳,获得30
10秒前
Hus11221发布了新的文献求助30
11秒前
Luna爱科研完成签到 ,获得积分10
11秒前
JamesPei应助多看文献采纳,获得10
11秒前
11秒前
honeyoko完成签到,获得积分10
11秒前
科研通AI2S应助枯藤老柳树采纳,获得10
12秒前
xinyu完成签到,获得积分10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3657844
求助须知:如何正确求助?哪些是违规求助? 3219862
关于积分的说明 9733864
捐赠科研通 2928835
什么是DOI,文献DOI怎么找? 1603686
邀请新用户注册赠送积分活动 756719
科研通“疑难数据库(出版商)”最低求助积分说明 734079