亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Editorial: Network pharmacology and AI

计算机科学 药物重新定位 图形 人工智能 阿卡汀 机器学习 药物发现 雅卡索引 特征学习 聚类分析 药品 生物信息学 生物 药理学 理论计算机科学 抗氧化剂 芹菜素 类黄酮 生物化学
作者
Shao Li,Mantang Chen,Yuanjia Hu,Min Ye
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:307: 116260-116260 被引量:8
标识
DOI:10.1016/j.jep.2023.116260
摘要

Acacetin is widely distributed in traditional Chinese medicine and traditional herbs, with strong biological activity. Perhaps there are many potential effects that have not been explored. In the field of drug discovery, Mainstream methods focus on chemical structure. Traditional medicine cannot adapt to the mainstream prediction methods due to its complex composition.Our aim is that provide a prediction method more suitable for traditional medicine by graph representation learning and transcriptome data. And use this method to predict acacetin.Our method mainly consists of two parts. The first part is to use the method of graph representation learning to vectorize drugs as a database. The original data of this part comes from transcriptome data on Gene Expression Omnibus. The method of graph representation learning is an unsupervised learning. If there is no prior knowledge as the label data, the training effect cannot be analyzed. Therefore, we define a standard score to evaluate our results through the idea of Jaccard index. The second part is to put the target drug into our database. The potential similarity between drugs was evaluated by the Euclidean distance between vectors, and the potential efficacy of the target drug is predicted by combining the chemical-disease relationship data in the Comparative Toxicogenomics Database. The target drug in this paper uses acacetin. We compared the predicted results with existing reports, and we also experimentally verified the efficacy of improving insulin resistance in the predicted results.The prediction results are relatively consistent with the existing reports, which demonstrated that our method has a certain degree of predictive performance. And for the efficacy of improving insulin resistance in the predicted result, we verified it through experiments.We propose a method to predict the potential efficacy of drugs based on transcriptome data, using Graph representation learning, which is very suitable for traditional medicine. Through this method, we predicted the efficacy of acacetin, and the results are relatively consistent with the current reports. This provides a new idea for unsupervised learning to apply medical information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张杰列夫完成签到 ,获得积分10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
馆长应助科研通管家采纳,获得20
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
花落无声完成签到 ,获得积分10
1分钟前
1分钟前
Lily完成签到,获得积分10
1分钟前
1分钟前
Lily发布了新的文献求助10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Jim完成签到,获得积分10
2分钟前
3分钟前
Shuo应助科研通管家采纳,获得20
3分钟前
慕青应助科研通管家采纳,获得10
3分钟前
lzxbarry应助科研通管家采纳,获得50
3分钟前
lzxbarry应助科研通管家采纳,获得50
3分钟前
3分钟前
Hodlumm完成签到,获得积分10
3分钟前
LArry完成签到,获得积分10
3分钟前
Orange应助TXZ06采纳,获得10
3分钟前
英姑应助zwang688采纳,获得10
3分钟前
星辰大海应助TXZ06采纳,获得10
4分钟前
思源应助mervin采纳,获得10
4分钟前
4分钟前
4分钟前
TXZ06发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
zwang688发布了新的文献求助10
4分钟前
顾矜应助科研通管家采纳,获得10
5分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
5分钟前
5分钟前
mervin发布了新的文献求助10
5分钟前
6分钟前
6分钟前
DannyNickolov发布了新的文献求助10
6分钟前
6分钟前
曲夜白完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596033
求助须知:如何正确求助?哪些是违规求助? 4008156
关于积分的说明 12408892
捐赠科研通 3687052
什么是DOI,文献DOI怎么找? 2032177
邀请新用户注册赠送积分活动 1065413
科研通“疑难数据库(出版商)”最低求助积分说明 950750