亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Editorial: Network pharmacology and AI

计算机科学 药物重新定位 图形 人工智能 阿卡汀 机器学习 药物发现 雅卡索引 特征学习 聚类分析 药品 生物信息学 生物 药理学 芹菜素 生物化学 类黄酮 理论计算机科学 抗氧化剂
作者
Shao Li,Mantang Chen,Yuanjia Hu,Min Ye
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:307: 116260-116260 被引量:8
标识
DOI:10.1016/j.jep.2023.116260
摘要

Acacetin is widely distributed in traditional Chinese medicine and traditional herbs, with strong biological activity. Perhaps there are many potential effects that have not been explored. In the field of drug discovery, Mainstream methods focus on chemical structure. Traditional medicine cannot adapt to the mainstream prediction methods due to its complex composition.Our aim is that provide a prediction method more suitable for traditional medicine by graph representation learning and transcriptome data. And use this method to predict acacetin.Our method mainly consists of two parts. The first part is to use the method of graph representation learning to vectorize drugs as a database. The original data of this part comes from transcriptome data on Gene Expression Omnibus. The method of graph representation learning is an unsupervised learning. If there is no prior knowledge as the label data, the training effect cannot be analyzed. Therefore, we define a standard score to evaluate our results through the idea of Jaccard index. The second part is to put the target drug into our database. The potential similarity between drugs was evaluated by the Euclidean distance between vectors, and the potential efficacy of the target drug is predicted by combining the chemical-disease relationship data in the Comparative Toxicogenomics Database. The target drug in this paper uses acacetin. We compared the predicted results with existing reports, and we also experimentally verified the efficacy of improving insulin resistance in the predicted results.The prediction results are relatively consistent with the existing reports, which demonstrated that our method has a certain degree of predictive performance. And for the efficacy of improving insulin resistance in the predicted result, we verified it through experiments.We propose a method to predict the potential efficacy of drugs based on transcriptome data, using Graph representation learning, which is very suitable for traditional medicine. Through this method, we predicted the efficacy of acacetin, and the results are relatively consistent with the current reports. This provides a new idea for unsupervised learning to apply medical information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ly发布了新的文献求助10
1秒前
scxl2000完成签到 ,获得积分10
2秒前
邓亚楠发布了新的文献求助10
3秒前
泽Y完成签到 ,获得积分10
4秒前
青岚完成签到 ,获得积分10
10秒前
Tumumu完成签到,获得积分10
10秒前
16秒前
17秒前
21秒前
酷酷白萱发布了新的文献求助20
24秒前
30秒前
yinshan完成签到 ,获得积分10
36秒前
小真白发布了新的文献求助30
39秒前
自由的寄灵完成签到,获得积分10
47秒前
酷波er应助经年采纳,获得10
55秒前
58秒前
平淡如天完成签到,获得积分10
59秒前
1分钟前
光源处发布了新的文献求助10
1分钟前
1分钟前
温暖笑容发布了新的文献求助10
1分钟前
lsm发布了新的文献求助10
1分钟前
1分钟前
lsm完成签到,获得积分10
1分钟前
1分钟前
Dr.Tang完成签到 ,获得积分10
1分钟前
搜集达人应助WATeam采纳,获得10
1分钟前
斯文的苡完成签到,获得积分10
1分钟前
jyy完成签到,获得积分10
1分钟前
tta发布了新的文献求助10
1分钟前
头孢西丁完成签到 ,获得积分10
1分钟前
willlee完成签到 ,获得积分10
1分钟前
1分钟前
Cain驳回了顾矜应助
1分钟前
HCB1发布了新的文献求助10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
Akim应助拼搏的二哈采纳,获得10
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990012
求助须知:如何正确求助?哪些是违规求助? 3532068
关于积分的说明 11256227
捐赠科研通 3270933
什么是DOI,文献DOI怎么找? 1805123
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216