已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Editorial: Network pharmacology and AI

计算机科学 药物重新定位 图形 人工智能 阿卡汀 机器学习 药物发现 雅卡索引 特征学习 聚类分析 药品 生物信息学 生物 药理学 理论计算机科学 抗氧化剂 芹菜素 类黄酮 生物化学
作者
Shao Li,Mantang Chen,Yuanjia Hu,Min Ye
出处
期刊:Journal of Ethnopharmacology [Elsevier]
卷期号:307: 116260-116260 被引量:11
标识
DOI:10.1016/j.jep.2023.116260
摘要

Acacetin is widely distributed in traditional Chinese medicine and traditional herbs, with strong biological activity. Perhaps there are many potential effects that have not been explored. In the field of drug discovery, Mainstream methods focus on chemical structure. Traditional medicine cannot adapt to the mainstream prediction methods due to its complex composition.Our aim is that provide a prediction method more suitable for traditional medicine by graph representation learning and transcriptome data. And use this method to predict acacetin.Our method mainly consists of two parts. The first part is to use the method of graph representation learning to vectorize drugs as a database. The original data of this part comes from transcriptome data on Gene Expression Omnibus. The method of graph representation learning is an unsupervised learning. If there is no prior knowledge as the label data, the training effect cannot be analyzed. Therefore, we define a standard score to evaluate our results through the idea of Jaccard index. The second part is to put the target drug into our database. The potential similarity between drugs was evaluated by the Euclidean distance between vectors, and the potential efficacy of the target drug is predicted by combining the chemical-disease relationship data in the Comparative Toxicogenomics Database. The target drug in this paper uses acacetin. We compared the predicted results with existing reports, and we also experimentally verified the efficacy of improving insulin resistance in the predicted results.The prediction results are relatively consistent with the existing reports, which demonstrated that our method has a certain degree of predictive performance. And for the efficacy of improving insulin resistance in the predicted result, we verified it through experiments.We propose a method to predict the potential efficacy of drugs based on transcriptome data, using Graph representation learning, which is very suitable for traditional medicine. Through this method, we predicted the efficacy of acacetin, and the results are relatively consistent with the current reports. This provides a new idea for unsupervised learning to apply medical information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tong完成签到 ,获得积分10
1秒前
祁连山的熊猫完成签到 ,获得积分0
2秒前
yuanyuan发布了新的文献求助10
3秒前
莫春莹完成签到 ,获得积分10
3秒前
Vaseegara完成签到 ,获得积分10
3秒前
4秒前
xing完成签到,获得积分10
6秒前
8秒前
9秒前
Cmqq发布了新的文献求助10
9秒前
斯文败类应助111版采纳,获得10
11秒前
走走发布了新的文献求助10
12秒前
爱宁完成签到 ,获得积分10
13秒前
14秒前
neao完成签到 ,获得积分10
14秒前
15秒前
脸小呆呆发布了新的文献求助10
17秒前
sxb10101完成签到 ,获得积分10
17秒前
哇塞完成签到 ,获得积分10
20秒前
20秒前
oasis完成签到,获得积分10
20秒前
21秒前
奋斗机器猫完成签到 ,获得积分10
21秒前
flashunter发布了新的文献求助10
22秒前
武玉坤完成签到,获得积分10
23秒前
布同完成签到,获得积分0
24秒前
25秒前
ahaaa完成签到 ,获得积分10
26秒前
DGYT7786完成签到 ,获得积分10
26秒前
小白发布了新的文献求助10
26秒前
搜集达人应助从容的翼采纳,获得10
26秒前
李健应助安详的中心采纳,获得10
27秒前
yyd完成签到,获得积分10
28秒前
dengdengdeng完成签到 ,获得积分10
29秒前
29秒前
贪吃的哦润吉完成签到 ,获得积分10
29秒前
空军完成签到 ,获得积分10
30秒前
31秒前
尘远知山静完成签到 ,获得积分10
32秒前
脱锦涛完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599529
求助须知:如何正确求助?哪些是违规求助? 4685197
关于积分的说明 14838182
捐赠科研通 4668952
什么是DOI,文献DOI怎么找? 2538068
邀请新用户注册赠送积分活动 1505447
关于科研通互助平台的介绍 1470816