Editorial: Network pharmacology and AI

计算机科学 药物重新定位 图形 人工智能 阿卡汀 机器学习 药物发现 雅卡索引 特征学习 聚类分析 药品 生物信息学 生物 药理学 理论计算机科学 抗氧化剂 芹菜素 类黄酮 生物化学
作者
Shao Li,Mantang Chen,Yuanjia Hu,Min Ye
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:307: 116260-116260 被引量:8
标识
DOI:10.1016/j.jep.2023.116260
摘要

Acacetin is widely distributed in traditional Chinese medicine and traditional herbs, with strong biological activity. Perhaps there are many potential effects that have not been explored. In the field of drug discovery, Mainstream methods focus on chemical structure. Traditional medicine cannot adapt to the mainstream prediction methods due to its complex composition.Our aim is that provide a prediction method more suitable for traditional medicine by graph representation learning and transcriptome data. And use this method to predict acacetin.Our method mainly consists of two parts. The first part is to use the method of graph representation learning to vectorize drugs as a database. The original data of this part comes from transcriptome data on Gene Expression Omnibus. The method of graph representation learning is an unsupervised learning. If there is no prior knowledge as the label data, the training effect cannot be analyzed. Therefore, we define a standard score to evaluate our results through the idea of Jaccard index. The second part is to put the target drug into our database. The potential similarity between drugs was evaluated by the Euclidean distance between vectors, and the potential efficacy of the target drug is predicted by combining the chemical-disease relationship data in the Comparative Toxicogenomics Database. The target drug in this paper uses acacetin. We compared the predicted results with existing reports, and we also experimentally verified the efficacy of improving insulin resistance in the predicted results.The prediction results are relatively consistent with the existing reports, which demonstrated that our method has a certain degree of predictive performance. And for the efficacy of improving insulin resistance in the predicted result, we verified it through experiments.We propose a method to predict the potential efficacy of drugs based on transcriptome data, using Graph representation learning, which is very suitable for traditional medicine. Through this method, we predicted the efficacy of acacetin, and the results are relatively consistent with the current reports. This provides a new idea for unsupervised learning to apply medical information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
之_ZH完成签到 ,获得积分10
2秒前
gds2021完成签到 ,获得积分10
4秒前
你好呀嘻嘻完成签到 ,获得积分10
4秒前
梅特卡夫完成签到,获得积分10
6秒前
熊雅完成签到,获得积分10
7秒前
9秒前
睡到自然醒完成签到 ,获得积分10
10秒前
cis2014完成签到,获得积分10
12秒前
独特的大有完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
15秒前
xingyi完成签到,获得积分10
17秒前
18秒前
舒心的秋荷完成签到 ,获得积分10
21秒前
zz123发布了新的文献求助10
22秒前
liaomr完成签到 ,获得积分10
22秒前
粗犷的灵松完成签到,获得积分10
23秒前
吃小孩的妖怪完成签到 ,获得积分10
23秒前
ncuwzq完成签到,获得积分10
25秒前
yshj完成签到 ,获得积分10
26秒前
28秒前
净禅完成签到 ,获得积分10
30秒前
32秒前
迷人的寒风完成签到,获得积分10
33秒前
33秒前
water应助科研通管家采纳,获得10
34秒前
Lucas应助HHHAN采纳,获得10
36秒前
无情修杰完成签到 ,获得积分10
37秒前
小柒完成签到 ,获得积分10
39秒前
聪慧芷巧发布了新的文献求助10
40秒前
41秒前
45秒前
蓝意完成签到,获得积分0
46秒前
xiaohongmao完成签到,获得积分10
51秒前
54秒前
qweerrtt完成签到,获得积分10
1分钟前
1分钟前
与共发布了新的文献求助10
1分钟前
carly完成签到 ,获得积分10
1分钟前
颢懿完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022