已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Editorial: Network pharmacology and AI

计算机科学 药物重新定位 图形 人工智能 阿卡汀 机器学习 药物发现 雅卡索引 特征学习 聚类分析 药品 生物信息学 生物 药理学 芹菜素 生物化学 类黄酮 理论计算机科学 抗氧化剂
作者
Shao Li,Mantang Chen,Yuanjia Hu,Min Ye
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:307: 116260-116260 被引量:8
标识
DOI:10.1016/j.jep.2023.116260
摘要

Acacetin is widely distributed in traditional Chinese medicine and traditional herbs, with strong biological activity. Perhaps there are many potential effects that have not been explored. In the field of drug discovery, Mainstream methods focus on chemical structure. Traditional medicine cannot adapt to the mainstream prediction methods due to its complex composition.Our aim is that provide a prediction method more suitable for traditional medicine by graph representation learning and transcriptome data. And use this method to predict acacetin.Our method mainly consists of two parts. The first part is to use the method of graph representation learning to vectorize drugs as a database. The original data of this part comes from transcriptome data on Gene Expression Omnibus. The method of graph representation learning is an unsupervised learning. If there is no prior knowledge as the label data, the training effect cannot be analyzed. Therefore, we define a standard score to evaluate our results through the idea of Jaccard index. The second part is to put the target drug into our database. The potential similarity between drugs was evaluated by the Euclidean distance between vectors, and the potential efficacy of the target drug is predicted by combining the chemical-disease relationship data in the Comparative Toxicogenomics Database. The target drug in this paper uses acacetin. We compared the predicted results with existing reports, and we also experimentally verified the efficacy of improving insulin resistance in the predicted results.The prediction results are relatively consistent with the existing reports, which demonstrated that our method has a certain degree of predictive performance. And for the efficacy of improving insulin resistance in the predicted result, we verified it through experiments.We propose a method to predict the potential efficacy of drugs based on transcriptome data, using Graph representation learning, which is very suitable for traditional medicine. Through this method, we predicted the efficacy of acacetin, and the results are relatively consistent with the current reports. This provides a new idea for unsupervised learning to apply medical information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得30
3秒前
华仔应助科研通管家采纳,获得10
3秒前
coolkid应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
Rondab应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
林淼完成签到 ,获得积分10
5秒前
6秒前
妥妥酱完成签到,获得积分10
11秒前
13秒前
眼睛大萃发布了新的文献求助10
15秒前
Xangel发布了新的文献求助10
17秒前
18秒前
21秒前
居糯糯完成签到,获得积分10
21秒前
27秒前
66完成签到,获得积分10
29秒前
lipengfei完成签到,获得积分10
31秒前
JamesPei应助风车采纳,获得10
34秒前
35秒前
41秒前
41秒前
泽荣杨完成签到,获得积分10
44秒前
Lee发布了新的文献求助10
46秒前
虚幻豌豆发布了新的文献求助10
47秒前
iNk应助lina采纳,获得20
49秒前
49秒前
50秒前
JamesPei应助山奈采纳,获得10
52秒前
华仔应助hyhyhyhy采纳,获得10
52秒前
Lee完成签到,获得积分20
53秒前
53秒前
可爱的函函应助苏和杨采纳,获得10
53秒前
风车发布了新的文献求助10
54秒前
54秒前
54秒前
RRRZZ完成签到 ,获得积分10
57秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989832
求助须知:如何正确求助?哪些是违规求助? 3531967
关于积分的说明 11255613
捐赠科研通 3270725
什么是DOI,文献DOI怎么找? 1805035
邀请新用户注册赠送积分活动 882181
科研通“疑难数据库(出版商)”最低求助积分说明 809208