Editorial: Network pharmacology and AI

计算机科学 药物重新定位 图形 人工智能 阿卡汀 机器学习 药物发现 雅卡索引 特征学习 聚类分析 药品 生物信息学 生物 药理学 芹菜素 生物化学 类黄酮 理论计算机科学 抗氧化剂
作者
Shao Li,Jianxin Chen,Yuanjia Hu,Min Ye
出处
期刊:Journal of Ethnopharmacology [Elsevier]
卷期号:307: 116260-116260 被引量:1
标识
DOI:10.1016/j.jep.2023.116260
摘要

Acacetin is widely distributed in traditional Chinese medicine and traditional herbs, with strong biological activity. Perhaps there are many potential effects that have not been explored. In the field of drug discovery, Mainstream methods focus on chemical structure. Traditional medicine cannot adapt to the mainstream prediction methods due to its complex composition.Our aim is that provide a prediction method more suitable for traditional medicine by graph representation learning and transcriptome data. And use this method to predict acacetin.Our method mainly consists of two parts. The first part is to use the method of graph representation learning to vectorize drugs as a database. The original data of this part comes from transcriptome data on Gene Expression Omnibus. The method of graph representation learning is an unsupervised learning. If there is no prior knowledge as the label data, the training effect cannot be analyzed. Therefore, we define a standard score to evaluate our results through the idea of Jaccard index. The second part is to put the target drug into our database. The potential similarity between drugs was evaluated by the Euclidean distance between vectors, and the potential efficacy of the target drug is predicted by combining the chemical-disease relationship data in the Comparative Toxicogenomics Database. The target drug in this paper uses acacetin. We compared the predicted results with existing reports, and we also experimentally verified the efficacy of improving insulin resistance in the predicted results.The prediction results are relatively consistent with the existing reports, which demonstrated that our method has a certain degree of predictive performance. And for the efficacy of improving insulin resistance in the predicted result, we verified it through experiments.We propose a method to predict the potential efficacy of drugs based on transcriptome data, using Graph representation learning, which is very suitable for traditional medicine. Through this method, we predicted the efficacy of acacetin, and the results are relatively consistent with the current reports. This provides a new idea for unsupervised learning to apply medical information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
泽灵发布了新的文献求助10
1秒前
公孙朝雨发布了新的文献求助10
1秒前
Robin关注了科研通微信公众号
1秒前
fufufufu完成签到,获得积分10
2秒前
2秒前
许钟一完成签到,获得积分10
2秒前
2秒前
3秒前
锅锅发布了新的文献求助10
3秒前
调皮的绿真完成签到,获得积分10
4秒前
小飞象完成签到,获得积分10
4秒前
4秒前
lyy完成签到 ,获得积分10
5秒前
彭于晏应助yin采纳,获得10
5秒前
土豪的发带完成签到,获得积分10
5秒前
MMMgao发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
仙女的小可爱完成签到 ,获得积分10
7秒前
8秒前
zlg完成签到 ,获得积分10
8秒前
holic完成签到,获得积分10
8秒前
Aaron完成签到,获得积分10
9秒前
抹月批风发布了新的文献求助10
9秒前
rgsrgrs完成签到,获得积分10
9秒前
莫道完成签到,获得积分10
9秒前
bear完成签到,获得积分0
9秒前
JamesPei应助多宝鱼采纳,获得10
9秒前
苗条大叔发布了新的文献求助10
10秒前
10秒前
10秒前
战神幽默完成签到,获得积分10
10秒前
荒天帝完成签到 ,获得积分10
11秒前
ppp发布了新的文献求助10
11秒前
俭朴晟睿应助樊妥妥采纳,获得10
11秒前
rgsrgrs发布了新的文献求助10
12秒前
12秒前
明理采珊完成签到,获得积分10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303915
求助须知:如何正确求助?哪些是违规求助? 2938066
关于积分的说明 8486128
捐赠科研通 2612060
什么是DOI,文献DOI怎么找? 1426478
科研通“疑难数据库(出版商)”最低求助积分说明 662641
邀请新用户注册赠送积分活动 647276