已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An IOT framework for detecting cardiac arrhythmias in real-time using deep learning resnet model

心跳 计算机科学 心律失常 深度学习 人工智能 上传 QRS波群 实时计算 模式识别(心理学) 医学 心脏病学 计算机安全 心房颤动 操作系统
作者
S. Sai Kumar,Dhruva R. Rinku,A. Pradeep Kumar,Rekharani Maddula,C. Anna Palagan
出处
期刊:Measurement: Sensors [Elsevier BV]
卷期号:29: 100866-100866 被引量:12
标识
DOI:10.1016/j.measen.2023.100866
摘要

A cardiac arrhythmia poses a serious health risk to patients and can have serious consequences for their health. A clinical assessment of arrhythmia disorders could save a person's life. The Internet of Things (IoT) will revolutionize the healthcare sector by continuously monitoring cardiac arrhythmia diseases remotely and minimally invasively. We propose a frame-work that will facilitate the development of a practical diagnostic tool for the identification of cardiac arrhythmias in real-time in this work. An Electrocardiogram (ECG) signal is processed using the Pan Tompkins QRS (Quantum Resonance System) detection method in order to extract the dynamic properties of the signal. The inter beat (RR) intervals are derived from an ECG signal in order to determine the characteristics of heart rate variability. The electrocardiogram is primarily used to identify irregular heartbeats (cardiac arrhythmias). Therefore, in our study, we evaluated other factors such as the heartbeat of the individual. As part of our IoT deployment, we are storing and analyzing data collected by the Pulse Sensor on the ThingSpeak IoT platform. The designed circuit's real-time collection of heartbeat and beats per minute values was uploaded to Thingspeak. Over the course of more than a week, we collected a variety of heart data. We propose Multi Channel Residual Network (MCHResNet) a deep-learning based solution that relies on multi-channel convolutions to detect both spatial and frequency features from electrocardiograms to facilitate the classification process. Based on the well-known Massachusetts Institute of Technology-Beth Israel Hospital Arrhythmia (MIT-BIH-AR) database, we evaluate the proposed framework against MCH ResNet. Our IoT-based framework has been shown to be effective based on the results reported in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
像风一样发布了新的文献求助10
刚刚
nn11完成签到,获得积分20
1秒前
1秒前
2秒前
阵痛完成签到 ,获得积分10
2秒前
LJ徽完成签到 ,获得积分0
6秒前
干净山柳完成签到,获得积分20
7秒前
三木足球发布了新的文献求助10
8秒前
12秒前
Lucas应助HonamC采纳,获得10
13秒前
彭于晏应助淡定宛白采纳,获得10
13秒前
今后应助干净山柳采纳,获得30
13秒前
16秒前
鹑尾完成签到,获得积分10
19秒前
田様应助牛犊采纳,获得10
19秒前
科研浩完成签到 ,获得积分10
21秒前
sjh发布了新的文献求助10
23秒前
WANG完成签到,获得积分10
24秒前
JamesPei应助donk采纳,获得10
26秒前
31秒前
31秒前
科研通AI2S应助lanbing802采纳,获得10
32秒前
归一发布了新的文献求助10
34秒前
zhuuuuuuu完成签到,获得积分10
34秒前
zyzy发布了新的文献求助10
35秒前
WEN发布了新的文献求助20
36秒前
37秒前
38秒前
38秒前
39秒前
绝味大姨发布了新的文献求助10
39秒前
CodeCraft应助荼白采纳,获得10
39秒前
淡定宛白发布了新的文献求助10
43秒前
43秒前
donk发布了新的文献求助10
44秒前
sjh完成签到,获得积分10
45秒前
TRz发布了新的文献求助10
45秒前
46秒前
千里江山一只蝇完成签到,获得积分10
48秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792373
求助须知:如何正确求助?哪些是违规求助? 3336567
关于积分的说明 10281481
捐赠科研通 3053280
什么是DOI,文献DOI怎么找? 1675560
邀请新用户注册赠送积分活动 803549
科研通“疑难数据库(出版商)”最低求助积分说明 761457