🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

BotMoE: Twitter Bot Detection with Community-Aware Mixtures of Modal-Specific Experts

计算机科学 元数据 杠杆(统计) 情报检索 万维网 社会化媒体 图形 人工智能 理论计算机科学
作者
Yuhan Liu,Zhaoxuan Tan,Heng Wang,Shangbin Feng,Qinghua Zheng,Minnan Luo
标识
DOI:10.1145/3539618.3591646
摘要

Twitter bot detection has become a crucial task in efforts to combat online misinformation, mitigate election interference, and curb malicious propaganda. However, advanced Twitter bots often attempt to mimic the characteristics of genuine users through feature manipulation and disguise themselves to fit in diverse user communities, posing challenges for existing Twitter bot detection models. To this end, we propose BotMoE, a Twitter bot detection framework that jointly utilizes multiple user information modalities (metadata, textual content, network structure) to improve the detection of deceptive bots. Furthermore, BotMoE incorporates a community-aware Mixture-of-Experts (MoE) layer to improve domain generalization and adapt to different Twitter communities. Specifically, BotMoE constructs modal-specific encoders for metadata features, textual content, and graph structure, which jointly model Twitter users from three modal-specific perspectives. We then employ a community-aware MoE layer to automatically assign users to different communities and leverage the corresponding expert networks. Finally, user representations from metadata, text, and graph perspectives are fused with an expert fusion layer, combining all three modalities while measuring the consistency of user information. Extensive experiments demonstrate that BotMoE significantly advances the state-of-the-art on three Twitter bot detection benchmarks. Studies also confirm that BotMoE captures advanced and evasive bots, alleviates the reliance on training data, and better generalizes to new and previously unseen user communities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑二娘发布了新的文献求助10
刚刚
bvuiragybv发布了新的文献求助10
1秒前
1秒前
####完成签到 ,获得积分10
2秒前
ss发布了新的文献求助10
2秒前
123657发布了新的文献求助10
2秒前
temp发布了新的文献求助10
2秒前
4秒前
xuyanfeng发布了新的文献求助10
5秒前
hucchongzi应助seven采纳,获得10
7秒前
科研通AI5应助seven采纳,获得10
7秒前
PG完成签到 ,获得积分10
7秒前
FK7发布了新的文献求助30
7秒前
7秒前
1111发布了新的文献求助10
8秒前
茉莉园完成签到,获得积分10
8秒前
天天快乐应助bvuiragybv采纳,获得10
9秒前
迟大猫应助个性醉波采纳,获得10
9秒前
沉静的灵安完成签到,获得积分10
10秒前
爆米花应助qqqqqqqq采纳,获得10
12秒前
思源应助qqqqqqqq采纳,获得10
12秒前
天天快乐应助qqqqqqqq采纳,获得10
12秒前
深情安青应助qqqqqqqq采纳,获得10
12秒前
FashionBoy应助qqqqqqqq采纳,获得10
12秒前
大模型应助qqqqqqqq采纳,获得10
12秒前
我是老大应助qqqqqqqq采纳,获得10
12秒前
领导范儿应助qqqqqqqq采纳,获得10
12秒前
星辰大海应助qqqqqqqq采纳,获得10
12秒前
乐乐应助qqqqqqqq采纳,获得10
12秒前
舒心水云发布了新的文献求助10
12秒前
13秒前
temp完成签到,获得积分10
13秒前
14秒前
17秒前
李健的粉丝团团长应助move采纳,获得10
17秒前
17秒前
19秒前
20秒前
酷波er应助科研小白采纳,获得10
20秒前
没有昵称发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Generative Machine Learning Models in Medical Image Computing 590
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3600008
求助须知:如何正确求助?哪些是违规求助? 3168702
关于积分的说明 9559090
捐赠科研通 2875140
什么是DOI,文献DOI怎么找? 1578599
邀请新用户注册赠送积分活动 742208
科研通“疑难数据库(出版商)”最低求助积分说明 725097