Neural network-based analytical solver for Fokker–Planck equation

人工神经网络 计算机科学 非线性系统 福克-普朗克方程 解算器 应用数学 代数方程 功能(生物学) 方程求解 代数数 算法 人工智能 微分方程 数学 数学分析 物理 进化生物学 生物 程序设计语言 量子力学
作者
Yang Zhang,Runfa Zhang,Ka‐Veng Yuen
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:125: 106721-106721 被引量:8
标识
DOI:10.1016/j.engappai.2023.106721
摘要

The Fokker–Planck equation has significant applications in dynamical systems. In recent years, some neural network methods have been used in combination with physical models to obtain its numerical solutions. However, it is also appealing if the analytical solution of the physical model can be obtained. This paper proposes a neural network-based method for the analytical solution of the FP equation. It relies on neural networks and uses their explicit model as the trial function for the FP equation. The trial function contains the weights and biases in the neural network. Therefore, the solving of the FP equation is converted into the calculation of the weights and biases. In the proposed method, the FP equations are first reduced to a set of easily solvable nonlinear algebraic equations using some trial functions, and then the corresponding weights and biases are determined using the method of pending coefficients. In this paper, linear and nonlinear numerical examples were used to verify the effectiveness of the proposed method. The results demonstrated that the proposed method can obtain the exact solution of the FP equations without data samples. Finally, the proposed method is compared in detail with physics-informed neural networks in terms of computational theory and computational effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
xia完成签到,获得积分10
4秒前
6秒前
7秒前
7秒前
王小华完成签到 ,获得积分10
7秒前
momo完成签到 ,获得积分10
9秒前
11秒前
12秒前
SciGPT应助YaHe采纳,获得10
15秒前
monere应助sx采纳,获得10
15秒前
小二郎应助疲惫的砂糖橘采纳,获得10
15秒前
17秒前
所所应助Peanut采纳,获得10
17秒前
17秒前
19秒前
科研通AI2S应助科研通管家采纳,获得50
19秒前
田様应助科研通管家采纳,获得10
19秒前
FKHY应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
Owen应助科研通管家采纳,获得10
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
21秒前
Singularity应助年轻半雪采纳,获得10
22秒前
23秒前
23秒前
SUS完成签到,获得积分10
24秒前
忍蛙发布了新的文献求助10
24秒前
25秒前
SUS发布了新的文献求助10
26秒前
26秒前
QR完成签到,获得积分20
26秒前
烂漫的思菱完成签到,获得积分10
27秒前
28秒前
Byron发布了新的文献求助10
28秒前
Akim应助逍遥采纳,获得10
29秒前
Frank发布了新的文献求助10
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247704
求助须知:如何正确求助?哪些是违规求助? 2890987
关于积分的说明 8265665
捐赠科研通 2559215
什么是DOI,文献DOI怎么找? 1388007
科研通“疑难数据库(出版商)”最低求助积分说明 650670
邀请新用户注册赠送积分活动 627557