Mapping of the full polarization switching pathways for HfO 2 and its implications

铁电性 极化(电化学) 材料科学 算法 化学 计算机科学 物理化学 电介质 光电子学
作者
Qi Hu,Shuning Lv,Hsiaoyi Tsai,Yufeng Xue,Xixiang Jing,Fanrong Lin,Chuan‐Jia Tong,Tengfei Cao,Gilberto Teobaldi,Limin Liu
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (7)
标识
DOI:10.1073/pnas.2419685122
摘要

The discovery of ferroelectric phases in HfO 2 offers insights into ferroelectricity. Its unique fluorite structure and complex polarization switching pathways exhibit distinct characteristics, challenging conventional analysis methods. Combining group theory and first-principles calculations, we identify numerous unconventional electric polarization switching pathways in HfO 2 with energy barriers of 0.32 to 0.57 eV as a function of the different shift in the suboxygen lattices. In total, we identify 47 switching pathways for the orthorhombic phase, corresponding to the left cosets of the F m 3 ¯ m group with P c a 2 1 group. Contrary to the conception that the tetracoordinated oxygen (O IV ) layers are inactive, our result demonstrates that both the tricoordinated oxygen (O III ) and O IV can be displaced, leading to polarization switching along any axial direction. The multiple switching pathways in HfO 2 result in both 180° polarization reversal and the formation of 90° domains observed experimentally. Calculations show that specific switching pathways depend on the orientation of the applied electric field relative to the HfO 2 growth surface. This allows HfO 2 to automatically adjust the in-plane polarization direction under an out-of-plane electric field, thereby maximizing the out-of-plane component and contributing to the wake-up process. These findings redefine the roles of O III and O IV layers, clarify unconventional switching pathways, and enhance our understanding of electric field response mechanisms, wake-up, and fatigue in ferroelectrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨倩发布了新的文献求助20
刚刚
LikeS发布了新的文献求助10
刚刚
orixero应助复杂储采纳,获得10
刚刚
阔达宝莹发布了新的文献求助10
1秒前
陈美宏发布了新的文献求助30
1秒前
2秒前
wang完成签到,获得积分10
2秒前
tfq200完成签到,获得积分10
2秒前
背后的糖豆关注了科研通微信公众号
2秒前
3秒前
3秒前
mimimi发布了新的文献求助20
4秒前
4秒前
南巷的猫完成签到,获得积分20
5秒前
6秒前
6秒前
nine发布了新的文献求助10
6秒前
7秒前
mxy发布了新的文献求助10
7秒前
7秒前
xrd关闭了xrd文献求助
7秒前
7秒前
刘溢完成签到,获得积分20
8秒前
斯文败类应助bdJ采纳,获得10
8秒前
慕青应助pzh采纳,获得10
8秒前
科研通AI6应助Sky采纳,获得30
9秒前
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
12秒前
13秒前
13秒前
14秒前
15秒前
青草蛋糕完成签到 ,获得积分10
16秒前
复杂储发布了新的文献求助10
16秒前
MCst发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649011
求助须知:如何正确求助?哪些是违规求助? 4777097
关于积分的说明 15046363
捐赠科研通 4807843
什么是DOI,文献DOI怎么找? 2571160
邀请新用户注册赠送积分活动 1527756
关于科研通互助平台的介绍 1486683