抵抗
材料科学
纳米技术
平版印刷术
数码产品
纳米光刻
光电子学
制作
电气工程
工程类
图层(电子)
医学
病理
替代医学
作者
Lei Chen,Huikang Liang,Peng Liu,Cuihong Liu,Bo Feng,Zhiwen Shu,Yiqin Chen,Xiaoqian Dong,Jianfei Xie,Ming Ji,Huigao Duan
标识
DOI:10.1002/adma.202410978
摘要
Lithography is critical in micro- and nanofabrication processes, enabling the development of integrated circuits, semiconductor devices, and various advanced electronic and photonic systems. However, there are challenges related to sustainability, efficiency, and yield, as well as compatibility with transient electronics. This work introduces a sustainable lithography paradigm employing mechanically peelable resists compatible with existing cleanroom processes. The resists exhibit near-zero adhesion to various substrates, facilitating efficient, cost-effective, environmentally friendly, and chemical-free mechanical stripping without observable particulate residues. The mechanical lift-off process enables scalable and 100%-yield pattern transfer using commercially available tape within seconds. Furthermore, the new paradigm supports distributed and in situ conformal manufacturing using the peelable resist as a "transferable stencil mask" to fabricate various functional devices on flexible and nonplanar surfaces, as well as ultra-thin biodegradable substrates. Overall, this work expands the potential for using lift-off as a standard process in the pan-semiconductor industry and opens new avenues for lithographic procedures aimed at the reliable mass production of transient electronics and integrated biodegradable devices, addressing growing sustainability issues caused by electronic waste.
科研通智能强力驱动
Strongly Powered by AbleSci AI