亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Network-Based Methods for Deciphering the Oxidizability of Complex Leachate DOM with •OH/O3 via Molecular Signatures

溶解有机碳 渗滤液 化学 腐植酸 环境化学 有机化学 肥料
作者
Hui Wang,Lan Wang,Thomas Seviour,Changfu Yang,Yan Xiang,Ying Zhu,Michael Palocz-Andresen,Zongsu Wei,Ziyang Lou
出处
期刊:Environmental Science & Technology [American Chemical Society]
被引量:5
标识
DOI:10.1021/acs.est.4c08840
摘要

In landfill leachates containing complex dissolved organic matter (DOM), the link between individual DOM constituents and their inherent oxidizability is unclear. Here, we resolved the molecular signatures of DOM oxidized by •OH/O3 using FT-ICR MS, thereby elucidating their oxidizability and resistance in concentrated leachates. The comprehensive gradual fragmentation of complex leachate DOM was then revealed through a modified machine-learning framework based on 43 key pathways during ozonation. Specifically, humic substances like humic acid (HA) and fulvic acid (FA) were measured to be the dominant DOM fractions in concentrated leachates, accounting for 35.9–51.7% of the total organic carbon, which was consistent with the observation by three-dimensional fluorescence spectroscopy. According to FT-ICR MS, carboxyl-rich alicyclic molecules (CRAMs) or lignin-like substances were the most abundant components, comprising 40.2–54.5% of all substances. The machine learning modeling showed that molecular weight was the most important structural factor for DOM resistance to •OH and O3 degradation (SHAP value 0.84), followed by (DBE-O)/C (0.32), S/C (0.31), and H/C (0.08). During •OH and O3 attacking, unsaturated and reduced compounds were the dominant precursors. For the molecular transformation of CRAMs-DOM, oxygen addition reactions were found to be the predominant O3-attacking process, along with the dealkyl and carboxylic acid reactions during •OH oxidation that often resulted in more complete degradation of DOM. This study proposed a new framework integrating molecular signatures and machine learning for unraveling DOM's inherent reactivity in complexity, which informs strategies for managing concentrated leachates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
嘻嘻完成签到 ,获得积分10
13秒前
Hello应助Tang采纳,获得30
16秒前
隐形曼青应助yukky采纳,获得10
20秒前
mm发布了新的文献求助10
26秒前
充电宝应助蓝色牛马采纳,获得10
27秒前
36秒前
obedVL完成签到,获得积分10
39秒前
histamin完成签到,获得积分10
40秒前
蓝色牛马发布了新的文献求助10
41秒前
orixero应助一见喜采纳,获得10
43秒前
懒大王完成签到 ,获得积分10
45秒前
177完成签到,获得积分20
47秒前
48秒前
一见喜发布了新的文献求助10
54秒前
59秒前
科研通AI2S应助mm采纳,获得10
1分钟前
陈砍砍完成签到 ,获得积分10
1分钟前
dawnfu完成签到,获得积分10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
传奇3应助ylh采纳,获得10
1分钟前
1分钟前
1分钟前
dawnfu发布了新的文献求助10
1分钟前
小黑妞完成签到,获得积分10
1分钟前
英俊的铭应助王颖超采纳,获得30
1分钟前
1分钟前
ylh发布了新的文献求助10
1分钟前
Marciu33发布了新的文献求助10
1分钟前
1分钟前
香蕉觅云应助ylh采纳,获得10
1分钟前
Akim应助习惯过了头采纳,获得10
1分钟前
王颖超发布了新的文献求助30
1分钟前
BowieHuang应助小黑妞采纳,获得10
1分钟前
1分钟前
司空以蕊完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780200
求助须知:如何正确求助?哪些是违规求助? 5653166
关于积分的说明 15452863
捐赠科研通 4910949
什么是DOI,文献DOI怎么找? 2643155
邀请新用户注册赠送积分活动 1590810
关于科研通互助平台的介绍 1545294