Network-Based Methods for Deciphering the Oxidizability of Complex Leachate DOM with •OH/O3 via Molecular Signatures

溶解有机碳 渗滤液 化学 腐植酸 环境化学 有机化学 肥料
作者
Hui Wang,Lan Wang,Thomas Seviour,Changfu Yang,Yan Xiang,Ying Zhu,Michael Palocz-Andresen,Zongsu Wei,Ziyang Lou
出处
期刊:Environmental Science & Technology [American Chemical Society]
被引量:5
标识
DOI:10.1021/acs.est.4c08840
摘要

In landfill leachates containing complex dissolved organic matter (DOM), the link between individual DOM constituents and their inherent oxidizability is unclear. Here, we resolved the molecular signatures of DOM oxidized by •OH/O3 using FT-ICR MS, thereby elucidating their oxidizability and resistance in concentrated leachates. The comprehensive gradual fragmentation of complex leachate DOM was then revealed through a modified machine-learning framework based on 43 key pathways during ozonation. Specifically, humic substances like humic acid (HA) and fulvic acid (FA) were measured to be the dominant DOM fractions in concentrated leachates, accounting for 35.9–51.7% of the total organic carbon, which was consistent with the observation by three-dimensional fluorescence spectroscopy. According to FT-ICR MS, carboxyl-rich alicyclic molecules (CRAMs) or lignin-like substances were the most abundant components, comprising 40.2–54.5% of all substances. The machine learning modeling showed that molecular weight was the most important structural factor for DOM resistance to •OH and O3 degradation (SHAP value 0.84), followed by (DBE-O)/C (0.32), S/C (0.31), and H/C (0.08). During •OH and O3 attacking, unsaturated and reduced compounds were the dominant precursors. For the molecular transformation of CRAMs-DOM, oxygen addition reactions were found to be the predominant O3-attacking process, along with the dealkyl and carboxylic acid reactions during •OH oxidation that often resulted in more complete degradation of DOM. This study proposed a new framework integrating molecular signatures and machine learning for unraveling DOM's inherent reactivity in complexity, which informs strategies for managing concentrated leachates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
longer发布了新的文献求助10
刚刚
1101592875发布了新的文献求助10
1秒前
1秒前
cindyxym发布了新的文献求助10
2秒前
鲸鱼发布了新的文献求助10
2秒前
3秒前
3秒前
luo完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
顺心从霜完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
5秒前
Jin发布了新的文献求助10
5秒前
5秒前
5秒前
沙糖桔发布了新的文献求助10
5秒前
梁锦澎完成签到,获得积分10
6秒前
顺心从霜发布了新的文献求助10
7秒前
7秒前
yuting完成签到,获得积分10
8秒前
艾永涛发布了新的文献求助10
8秒前
9秒前
远帆江上发布了新的文献求助10
9秒前
salute_sang完成签到,获得积分10
9秒前
ggg发布了新的文献求助10
10秒前
10秒前
10秒前
研友_VZG7GZ应助杜晓倩采纳,获得10
11秒前
Daisy发布了新的文献求助20
11秒前
11秒前
11秒前
LV发布了新的文献求助10
12秒前
mgg发布了新的文献求助10
12秒前
共享精神应助琦琦采纳,获得10
13秒前
11发布了新的文献求助10
13秒前
罗dd发布了新的文献求助10
13秒前
dxy完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721239
求助须知:如何正确求助?哪些是违规求助? 5264932
关于积分的说明 15293624
捐赠科研通 4870549
什么是DOI,文献DOI怎么找? 2615518
邀请新用户注册赠送积分活动 1565353
关于科研通互助平台的介绍 1522370