Network-Based Methods for Deciphering the Oxidizability of Complex Leachate DOM with •OH/O3 via Molecular Signatures

溶解有机碳 渗滤液 化学 腐植酸 环境化学 有机化学 肥料
作者
Hui Wang,Lan Wang,Thomas Seviour,Changfu Yang,Yan Xiang,Ying Zhu,Michael Palocz-Andresen,Zongsu Wei,Ziyang Lou
出处
期刊:Environmental Science & Technology [American Chemical Society]
被引量:5
标识
DOI:10.1021/acs.est.4c08840
摘要

In landfill leachates containing complex dissolved organic matter (DOM), the link between individual DOM constituents and their inherent oxidizability is unclear. Here, we resolved the molecular signatures of DOM oxidized by •OH/O3 using FT-ICR MS, thereby elucidating their oxidizability and resistance in concentrated leachates. The comprehensive gradual fragmentation of complex leachate DOM was then revealed through a modified machine-learning framework based on 43 key pathways during ozonation. Specifically, humic substances like humic acid (HA) and fulvic acid (FA) were measured to be the dominant DOM fractions in concentrated leachates, accounting for 35.9–51.7% of the total organic carbon, which was consistent with the observation by three-dimensional fluorescence spectroscopy. According to FT-ICR MS, carboxyl-rich alicyclic molecules (CRAMs) or lignin-like substances were the most abundant components, comprising 40.2–54.5% of all substances. The machine learning modeling showed that molecular weight was the most important structural factor for DOM resistance to •OH and O3 degradation (SHAP value 0.84), followed by (DBE-O)/C (0.32), S/C (0.31), and H/C (0.08). During •OH and O3 attacking, unsaturated and reduced compounds were the dominant precursors. For the molecular transformation of CRAMs-DOM, oxygen addition reactions were found to be the predominant O3-attacking process, along with the dealkyl and carboxylic acid reactions during •OH oxidation that often resulted in more complete degradation of DOM. This study proposed a new framework integrating molecular signatures and machine learning for unraveling DOM's inherent reactivity in complexity, which informs strategies for managing concentrated leachates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助wf采纳,获得10
刚刚
sunsun10086完成签到 ,获得积分10
1秒前
琦琦完成签到 ,获得积分10
1秒前
1秒前
科目三应助xanderxue采纳,获得10
1秒前
1秒前
晶晶发布了新的文献求助10
1秒前
森森完成签到,获得积分10
2秒前
2秒前
Ava应助温暖的颜演采纳,获得10
2秒前
Ky_Mac应助Lee采纳,获得20
3秒前
ww发布了新的文献求助10
3秒前
3秒前
4秒前
抗氧剂完成签到,获得积分20
5秒前
直率的玉米完成签到 ,获得积分10
5秒前
英俊的铭应助ZMl采纳,获得10
5秒前
5秒前
爆米花应助wh雨采纳,获得10
5秒前
丘比特应助冷水鱼采纳,获得10
5秒前
LiZH完成签到,获得积分10
6秒前
7秒前
传奇3应助ivy采纳,获得10
7秒前
7秒前
Persepolis完成签到,获得积分10
7秒前
mm完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
小蘑菇应助sweettt3采纳,获得10
8秒前
10秒前
花粉过敏发布了新的文献求助10
10秒前
xianglinnnn完成签到,获得积分10
10秒前
陈2026完成签到,获得积分10
10秒前
xmj发布了新的文献求助10
10秒前
10秒前
善学以致用应助脆脆鲨采纳,获得10
10秒前
跳跃完成签到,获得积分10
10秒前
Wang完成签到,获得积分0
12秒前
12秒前
sssssss发布了新的文献求助10
12秒前
扶瑶可接发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710603
求助须知:如何正确求助?哪些是违规求助? 5199800
关于积分的说明 15261321
捐赠科研通 4863194
什么是DOI,文献DOI怎么找? 2610478
邀请新用户注册赠送积分活动 1560802
关于科研通互助平台的介绍 1518423