Network-Based Methods for Deciphering the Oxidizability of Complex Leachate DOM with •OH/O3 via Molecular Signatures

溶解有机碳 渗滤液 化学 腐植酸 环境化学 有机化学 肥料
作者
Hui Wang,Lan Wang,Thomas Seviour,Changfu Yang,Yan Xiang,Ying Zhu,Michael Palocz-Andresen,Zongsu Wei,Ziyang Lou
出处
期刊:Environmental Science & Technology [American Chemical Society]
被引量:5
标识
DOI:10.1021/acs.est.4c08840
摘要

In landfill leachates containing complex dissolved organic matter (DOM), the link between individual DOM constituents and their inherent oxidizability is unclear. Here, we resolved the molecular signatures of DOM oxidized by •OH/O3 using FT-ICR MS, thereby elucidating their oxidizability and resistance in concentrated leachates. The comprehensive gradual fragmentation of complex leachate DOM was then revealed through a modified machine-learning framework based on 43 key pathways during ozonation. Specifically, humic substances like humic acid (HA) and fulvic acid (FA) were measured to be the dominant DOM fractions in concentrated leachates, accounting for 35.9–51.7% of the total organic carbon, which was consistent with the observation by three-dimensional fluorescence spectroscopy. According to FT-ICR MS, carboxyl-rich alicyclic molecules (CRAMs) or lignin-like substances were the most abundant components, comprising 40.2–54.5% of all substances. The machine learning modeling showed that molecular weight was the most important structural factor for DOM resistance to •OH and O3 degradation (SHAP value 0.84), followed by (DBE-O)/C (0.32), S/C (0.31), and H/C (0.08). During •OH and O3 attacking, unsaturated and reduced compounds were the dominant precursors. For the molecular transformation of CRAMs-DOM, oxygen addition reactions were found to be the predominant O3-attacking process, along with the dealkyl and carboxylic acid reactions during •OH oxidation that often resulted in more complete degradation of DOM. This study proposed a new framework integrating molecular signatures and machine learning for unraveling DOM's inherent reactivity in complexity, which informs strategies for managing concentrated leachates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aryac完成签到,获得积分10
刚刚
刚刚
科研通AI2S应助Ma采纳,获得10
刚刚
遲悟篤行完成签到,获得积分10
1秒前
尹雪儿完成签到,获得积分10
1秒前
充电宝应助qq采纳,获得10
2秒前
AhhHuang应助容若采纳,获得10
3秒前
3秒前
科目三应助炙热的平灵采纳,获得10
3秒前
liuanqi发布了新的文献求助10
3秒前
4秒前
4秒前
科研通AI6应助文乐采纳,获得10
4秒前
安安安完成签到,获得积分10
5秒前
5秒前
Unicorn发布了新的文献求助10
5秒前
斯文败类应助清浅采纳,获得30
5秒前
5秒前
小二郎应助yyj采纳,获得10
6秒前
Aryac发布了新的文献求助10
6秒前
6秒前
7秒前
Pothos应助YAN采纳,获得30
8秒前
gzhoax应助山山而川采纳,获得30
8秒前
科研通AI6应助liam采纳,获得10
8秒前
烟里戏发布了新的文献求助10
8秒前
沙糖桔完成签到,获得积分10
8秒前
9秒前
Sunday给Sunday的求助进行了留言
9秒前
9秒前
ppy发布了新的文献求助10
9秒前
Chris发布了新的文献求助30
9秒前
嬴炎发布了新的文献求助10
9秒前
成就雨筠完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
崔大冠发布了新的文献求助10
10秒前
10秒前
11秒前
晚阳完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667262
求助须知:如何正确求助?哪些是违规求助? 4884975
关于积分的说明 15119469
捐赠科研通 4826112
什么是DOI,文献DOI怎么找? 2583765
邀请新用户注册赠送积分活动 1537901
关于科研通互助平台的介绍 1496041