Extracting Alpha from Financial Analyst Networks

阿尔法(金融) 计算机科学 财务 业务 营销 患者满意度 结构效度
作者
Dragos Gorduza,Yaxuan Kong,Xiaowen Dong,Stefan Zohren
标识
DOI:10.1145/3677052.3698630
摘要

We investigate the effectiveness of a momentum trading signal based on the coverage network of financial analysts. This signal builds on the key information-brokerage role financial sell-side analysts play in modern stock markets. The baskets of stocks covered by each analyst can be used to construct a network between firms whose edge weights represent the number of analysts jointly covering both firms. Although the link between financial analysts coverage and co-movement of firms' stock prices has been investigated in the literature, little effort has been made to systematically learn the most effective combination of signals from firms covered jointly by analysts in order to benefit from any spillover effect. To fill this gap, we build a trading strategy which leverages the analyst coverage network using a graph attention network. More specifically, our model learns to aggregate information from individual firm features and signals from neighbouring firms in a node-level forecasting task. We develop a portfolio based on those predictions which we demonstrate to exhibit an annualized returns of 29.44% and a Sharpe ratio of 4.06 substantially outperforming market baselines and existing graph machine learning based frameworks. We further investigate the performance and robustness of this strategy through extensive empirical analysis. Our paper represents one of the first attempts in using graph machine learning to extract actionable knowledge from the analyst coverage network for practical financial applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
haoran完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
Yuru完成签到,获得积分10
1秒前
2秒前
orixero应助wzx采纳,获得10
2秒前
吃饭加汤完成签到,获得积分10
2秒前
樊念烟发布了新的文献求助10
2秒前
sll完成签到,获得积分20
2秒前
111111完成签到,获得积分10
2秒前
小蘑菇应助MM采纳,获得10
3秒前
4秒前
岩追研完成签到,获得积分10
4秒前
5秒前
111111发布了新的文献求助10
5秒前
6秒前
无语的钢铁侠完成签到,获得积分10
6秒前
xi完成签到,获得积分10
6秒前
6秒前
yangyang完成签到,获得积分20
7秒前
zzz发布了新的文献求助10
7秒前
深情安青应助jitianxing采纳,获得10
7秒前
7秒前
zenzi发布了新的文献求助10
8秒前
不闻不问完成签到,获得积分10
8秒前
8秒前
TangbaoOK完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
maffei完成签到,获得积分10
9秒前
NexusExplorer应助毛慢慢采纳,获得10
9秒前
9秒前
天天快乐应助Alice采纳,获得20
10秒前
10秒前
wwwwwzzzzz发布了新的文献求助30
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620260
求助须知:如何正确求助?哪些是违规求助? 4704917
关于积分的说明 14929736
捐赠科研通 4761567
什么是DOI,文献DOI怎么找? 2550911
邀请新用户注册赠送积分活动 1513652
关于科研通互助平台的介绍 1474592