Abstract 4118735: Interpretable deep learning translation of GWAS findings for drug repurposing in Atrial Fibrillation

医学 心房颤动 药物重新定位 重新调整用途 药品 内科学 心脏病学 重症监护医学 药理学 生态学 生物
作者
Reina Tonegawa‐Kuji,Jielin Xu,Lijun Dou,Yuan Hou,John Barnard,Mina K. Chung,Feixiong Cheng
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:150 (Suppl_1)
标识
DOI:10.1161/circ.150.suppl_1.4118735
摘要

Introduction: Translating human genetic findings, such as genome-wide association studies (GWAS) to pathobiology and the discovery of therapeutic target remains a major challenge for Atrial Fibrillation (AF). We previously published a network topology-based deep learning framework to identify disease-associated genes (NETTAG). Hypothesis: By using a deep learning framework, we can efficiently identify AF risk genes, druggable targets, and candidates of repurposable drugs. Aims: To identify potential AF related genes and repurposable drug candidates using our deep learning framework. Methods: First, we collected the reported quantitative trait loci (QTLs) for AF from human heart tissues. Then, we identified the overlaps between the QTLs and the previously reported 150 AF GWAS loci in the latest meta-analysis. We previously built a comprehensive human protein-protein interactome using 18 publicly available databases, containing 351,444 unique PPIs and 17,706 proteins. Using the human protein-protein interactome and the overlaps between AF GWAS hits and QTLs, we prioritized genes and defined the genes with the top 1 % predicted score as AF risk genes (afRGs) using the NETTAG. Then, we assembled drugs from the Drugbank database relating 2,938 FDA-approved drugs or clinically investigated molecules. Using network proximity approaches to evaluate the closest distance between afRGs and a drug’s targets within the human protein-protein interactome, we computationally predicted drugs for AF using Z scores <-2.0. Results: We first collected the overlaps between AF GWAS hits and QTLs, which constituted 27 expression and 12 splicing QTLs. Via NETTAG, we identified 176 afRGs. Among the 176 predicted afRGs, 12 proteins (gene products of afRGs) have been identified as known drug targets with FDA-approved medicines. In total, 1,275 targets have been widely investigated as therapeutic targets for treating AF. Using the closest-based network proximity approach, we computationally identified 49 candidate drugs. These included drugs both reportedly potentially treating AF, such as Pioglitazone (Z=2.29), Telmisartan (Z=-2.52), Sildenafil (Z=-2.86), and those have never been reported before, such as Balsalazide (Z=-2.32). Conclusion: Using a deep learning methodology that utilized GWAS and QTL findings, we identified risk genes and repurposing drug candidates for AF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助XXU采纳,获得10
1秒前
科研搬砖发布了新的文献求助30
2秒前
2秒前
小马甲应助LIO采纳,获得20
2秒前
英姑应助呆呆呆采纳,获得10
2秒前
3秒前
3秒前
拾贰月完成签到 ,获得积分10
4秒前
简称王完成签到 ,获得积分10
4秒前
Akim应助舒适的淇采纳,获得10
5秒前
四辈完成签到,获得积分10
5秒前
Lucas应助赵怡宁采纳,获得10
7秒前
李li发布了新的文献求助10
7秒前
fff发布了新的文献求助10
8秒前
扎心应助科研通管家采纳,获得10
8秒前
无私的芹应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
和谐乌冬面完成签到,获得积分10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
Rondab应助科研通管家采纳,获得10
8秒前
8秒前
Ava应助001采纳,获得10
8秒前
Rondab应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
9秒前
9秒前
Ava应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Rondab应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
dong应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
米奇完成签到 ,获得积分10
9秒前
打打应助科研通管家采纳,获得10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958968
求助须知:如何正确求助?哪些是违规求助? 3505216
关于积分的说明 11123184
捐赠科研通 3236828
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871455
科研通“疑难数据库(出版商)”最低求助积分说明 802794