Abstract 4118735: Interpretable deep learning translation of GWAS findings for drug repurposing in Atrial Fibrillation

医学 心房颤动 药物重新定位 重新调整用途 药品 内科学 心脏病学 重症监护医学 药理学 生态学 生物
作者
Reina Tonegawa‐Kuji,Jielin Xu,Lijun Dou,Yuan Hou,John Barnard,Mina K. Chung,Feixiong Cheng
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:150 (Suppl_1)
标识
DOI:10.1161/circ.150.suppl_1.4118735
摘要

Introduction: Translating human genetic findings, such as genome-wide association studies (GWAS) to pathobiology and the discovery of therapeutic target remains a major challenge for Atrial Fibrillation (AF). We previously published a network topology-based deep learning framework to identify disease-associated genes (NETTAG). Hypothesis: By using a deep learning framework, we can efficiently identify AF risk genes, druggable targets, and candidates of repurposable drugs. Aims: To identify potential AF related genes and repurposable drug candidates using our deep learning framework. Methods: First, we collected the reported quantitative trait loci (QTLs) for AF from human heart tissues. Then, we identified the overlaps between the QTLs and the previously reported 150 AF GWAS loci in the latest meta-analysis. We previously built a comprehensive human protein-protein interactome using 18 publicly available databases, containing 351,444 unique PPIs and 17,706 proteins. Using the human protein-protein interactome and the overlaps between AF GWAS hits and QTLs, we prioritized genes and defined the genes with the top 1 % predicted score as AF risk genes (afRGs) using the NETTAG. Then, we assembled drugs from the Drugbank database relating 2,938 FDA-approved drugs or clinically investigated molecules. Using network proximity approaches to evaluate the closest distance between afRGs and a drug’s targets within the human protein-protein interactome, we computationally predicted drugs for AF using Z scores <-2.0. Results: We first collected the overlaps between AF GWAS hits and QTLs, which constituted 27 expression and 12 splicing QTLs. Via NETTAG, we identified 176 afRGs. Among the 176 predicted afRGs, 12 proteins (gene products of afRGs) have been identified as known drug targets with FDA-approved medicines. In total, 1,275 targets have been widely investigated as therapeutic targets for treating AF. Using the closest-based network proximity approach, we computationally identified 49 candidate drugs. These included drugs both reportedly potentially treating AF, such as Pioglitazone (Z=2.29), Telmisartan (Z=-2.52), Sildenafil (Z=-2.86), and those have never been reported before, such as Balsalazide (Z=-2.32). Conclusion: Using a deep learning methodology that utilized GWAS and QTL findings, we identified risk genes and repurposing drug candidates for AF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1250241652完成签到,获得积分10
1秒前
fenghao发布了新的文献求助10
2秒前
2秒前
3秒前
袁寒烟完成签到,获得积分10
3秒前
科研通AI6应助Szj采纳,获得10
3秒前
日月同辉发布了新的文献求助10
4秒前
张流筝完成签到 ,获得积分10
5秒前
5秒前
云端发布了新的文献求助30
6秒前
ruirchen完成签到,获得积分10
7秒前
7秒前
nan完成签到,获得积分10
8秒前
8秒前
科研通AI5应助Nimnse采纳,获得10
8秒前
复杂的忆灵完成签到,获得积分10
9秒前
Dr-Luo完成签到 ,获得积分10
9秒前
小二郎应助我是小张采纳,获得10
9秒前
安雨笙发布了新的文献求助10
9秒前
kk发布了新的文献求助10
9秒前
11秒前
ding应助wenLi采纳,获得10
11秒前
上官若男应助jie酱拌面采纳,获得10
11秒前
长不大的will完成签到,获得积分10
12秒前
英俊的铭应助复杂的忆灵采纳,获得10
12秒前
WS发布了新的文献求助10
12秒前
苏丽妃完成签到 ,获得积分10
12秒前
12秒前
小月亮完成签到,获得积分10
13秒前
fanzi完成签到 ,获得积分10
13秒前
XXF完成签到,获得积分10
14秒前
搜集达人应助爱听歌笑寒采纳,获得10
14秒前
15秒前
Yara完成签到 ,获得积分10
15秒前
干净的沛蓝完成签到,获得积分10
16秒前
赘婿应助zaphkiel采纳,获得10
16秒前
Lee发布了新的文献求助10
16秒前
亚铁氰化钾完成签到,获得积分10
17秒前
感动归尘发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
Lab-on-a-chip Devices for Advanced Biomedicines: Laboratory Scale Engineering to Clinical Ecosystem 1000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4530100
求助须知:如何正确求助?哪些是违规求助? 3968725
关于积分的说明 12295892
捐赠科研通 3634429
什么是DOI,文献DOI怎么找? 2000535
邀请新用户注册赠送积分活动 1036656
科研通“疑难数据库(出版商)”最低求助积分说明 926346