Abstract 4118735: Interpretable deep learning translation of GWAS findings for drug repurposing in Atrial Fibrillation

医学 心房颤动 药物重新定位 重新调整用途 药品 内科学 心脏病学 重症监护医学 药理学 生态学 生物
作者
Reina Tonegawa‐Kuji,Jielin Xu,Lijun Dou,Yuan Hou,John Barnard,Mina K. Chung,Feixiong Cheng
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:150 (Suppl_1)
标识
DOI:10.1161/circ.150.suppl_1.4118735
摘要

Introduction: Translating human genetic findings, such as genome-wide association studies (GWAS) to pathobiology and the discovery of therapeutic target remains a major challenge for Atrial Fibrillation (AF). We previously published a network topology-based deep learning framework to identify disease-associated genes (NETTAG). Hypothesis: By using a deep learning framework, we can efficiently identify AF risk genes, druggable targets, and candidates of repurposable drugs. Aims: To identify potential AF related genes and repurposable drug candidates using our deep learning framework. Methods: First, we collected the reported quantitative trait loci (QTLs) for AF from human heart tissues. Then, we identified the overlaps between the QTLs and the previously reported 150 AF GWAS loci in the latest meta-analysis. We previously built a comprehensive human protein-protein interactome using 18 publicly available databases, containing 351,444 unique PPIs and 17,706 proteins. Using the human protein-protein interactome and the overlaps between AF GWAS hits and QTLs, we prioritized genes and defined the genes with the top 1 % predicted score as AF risk genes (afRGs) using the NETTAG. Then, we assembled drugs from the Drugbank database relating 2,938 FDA-approved drugs or clinically investigated molecules. Using network proximity approaches to evaluate the closest distance between afRGs and a drug’s targets within the human protein-protein interactome, we computationally predicted drugs for AF using Z scores <-2.0. Results: We first collected the overlaps between AF GWAS hits and QTLs, which constituted 27 expression and 12 splicing QTLs. Via NETTAG, we identified 176 afRGs. Among the 176 predicted afRGs, 12 proteins (gene products of afRGs) have been identified as known drug targets with FDA-approved medicines. In total, 1,275 targets have been widely investigated as therapeutic targets for treating AF. Using the closest-based network proximity approach, we computationally identified 49 candidate drugs. These included drugs both reportedly potentially treating AF, such as Pioglitazone (Z=2.29), Telmisartan (Z=-2.52), Sildenafil (Z=-2.86), and those have never been reported before, such as Balsalazide (Z=-2.32). Conclusion: Using a deep learning methodology that utilized GWAS and QTL findings, we identified risk genes and repurposing drug candidates for AF.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助AmyHu采纳,获得10
刚刚
饱满贞完成签到,获得积分10
1秒前
5秒前
想吃芝士焗饭完成签到 ,获得积分10
5秒前
科研通AI2S应助饱满贞采纳,获得10
6秒前
7秒前
晴光完成签到 ,获得积分10
7秒前
FashionBoy应助谦让的静芙采纳,获得30
8秒前
9秒前
m13965062353发布了新的文献求助80
9秒前
Brocade发布了新的文献求助10
12秒前
12秒前
长乐完成签到,获得积分10
12秒前
maox1aoxin应助甫_F采纳,获得50
13秒前
明亮的冬天应助甫_F采纳,获得50
13秒前
安静远航发布了新的文献求助10
14秒前
大个应助CCC采纳,获得30
17秒前
双黄应助科研通管家采纳,获得20
19秒前
天天快乐应助科研通管家采纳,获得10
19秒前
哆唻应助科研通管家采纳,获得30
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得30
19秒前
8R60d8应助科研通管家采纳,获得10
20秒前
cocolu应助科研通管家采纳,获得10
20秒前
嗯哼应助bias采纳,获得20
20秒前
orixero应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
清平道人应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
良辰应助科研通管家采纳,获得10
20秒前
8R60d8应助科研通管家采纳,获得10
20秒前
ding应助科研通管家采纳,获得10
20秒前
22秒前
顾矜应助安静远航采纳,获得10
23秒前
优美熠悦发布了新的文献求助10
25秒前
哈娜桑de悦完成签到,获得积分10
28秒前
30秒前
30秒前
烟花应助dongdoctor采纳,获得10
34秒前
RAY发布了新的文献求助10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314019
求助须知:如何正确求助?哪些是违规求助? 2946434
关于积分的说明 8530073
捐赠科研通 2622079
什么是DOI,文献DOI怎么找? 1434341
科研通“疑难数据库(出版商)”最低求助积分说明 665205
邀请新用户注册赠送积分活动 650792