Comparative Analysis of Machine Learning Algorithms Used for Translating Aptamer-Antigen Binding Kinetic Profiles to Diagnostic Decisions

适体 计算机科学 算法 动能 人工智能 机器学习 计算生物学 化学 生物系统 生物 分子生物学 物理 量子力学
作者
Sadman Sakib,K.K. Bajaj,Payel Sen,Wantong Li,Jimmy Gu,Yingfu Li,Leyla Soleymani
出处
期刊:ACS Sensors [American Chemical Society]
标识
DOI:10.1021/acssensors.4c02682
摘要

Current approaches for classifying biosensor data in diagnostics rely on fixed decision thresholds based on receiver operating characteristic (ROC) curves, which can be limited in accuracy for complex and variable signals. To address these limitations, we developed a framework that facilitates the application of machine learning (ML) to diagnostic data for the binary classification of clinical samples, when using real-time electrochemical measurements. The framework was applied to a real-time multimeric aptamer assay (RT-MAp) that captures single-frequency (12.6 Hz) impedance data during the binding of viral protein targets to trimeric aptamers. The impedance data collected from 172 COVID-19 saliva samples were processed through multiple nonlinear regression models to extract nine key features from the transient signals. These features were then used to train three supervised ML algorithms─support vector machine (SVM), artificial neural network (ANN), and random forest (RF)─using a 75:25 training-testing ratio. Traditional ROC-based classification achieved an accuracy of 83.6%, while ML-based models significantly improved performance, with SVM, ANN, and RF achieving accuracies of 86.0%, 100%, and 100%, respectively. The ANN model demonstrated superior performance in handling complex and high-variance biosensor data, providing a robust and scalable solution for improving diagnostic accuracy in point-of-care settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
解羽发布了新的文献求助10
1秒前
2秒前
2秒前
香蕉觅云应助小凉采纳,获得10
2秒前
miaomiao发布了新的文献求助80
3秒前
3秒前
5秒前
7秒前
失眠的霸完成签到,获得积分10
7秒前
Jasper应助Aprilapple采纳,获得10
7秒前
zby发布了新的文献求助10
8秒前
隐形曼青应助lisastream采纳,获得10
8秒前
李健应助故意的鼠标采纳,获得10
8秒前
苏苏发布了新的文献求助10
11秒前
zwf123发布了新的文献求助10
12秒前
拉拉霍霍发布了新的文献求助10
13秒前
14秒前
隐形曼青应助美丽的之双采纳,获得10
17秒前
Zkxxxx发布了新的文献求助30
17秒前
nnmm11完成签到 ,获得积分10
18秒前
18秒前
万能图书馆应助快乐蜗牛采纳,获得10
21秒前
可乐不加冰完成签到 ,获得积分10
21秒前
友好惜雪发布了新的文献求助10
24秒前
24秒前
24秒前
夏漆应助赵再戌采纳,获得20
24秒前
nnmm11关注了科研通微信公众号
25秒前
26秒前
陈金致应助喜欢搞科研采纳,获得10
28秒前
FashionBoy应助言叶采纳,获得10
28秒前
29秒前
xin发布了新的文献求助10
29秒前
29秒前
31秒前
炙热尔阳完成签到 ,获得积分10
33秒前
医学生Mavis完成签到,获得积分10
36秒前
san发布了新的文献求助10
36秒前
喻鞅完成签到,获得积分10
36秒前
37秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391478
求助须知:如何正确求助?哪些是违规求助? 3002609
关于积分的说明 8804745
捐赠科研通 2689187
什么是DOI,文献DOI怎么找? 1472999
科研通“疑难数据库(出版商)”最低求助积分说明 681297
邀请新用户注册赠送积分活动 674184