UVMSR: a novel approach to hyperspectral image super-resolution by fusing U-Net and Mamba

高光谱成像 遥感 计算机科学 图像(数学) 人工智能 计算机视觉 环境科学 地理
作者
Ting Tang,Weihong Yan,Geli Bai,Xin Pan,Jiangping Liu
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:: 1-32
标识
DOI:10.1080/01431161.2024.2443619
摘要

The hyperspectral image super resolution (HSISR) task has been thoroughly researched and has shown notable advancements. However, existing deep neural network-based methods for HSISR face challenges in effectively utilizing global spectral-spatial information. While transformer-based models exhibit strong global modelling capabilities, their high computational complexity poses a challenge when applied to hyperspectral image processing. Recently, state space models (SSM) with efficient hardware-aware design, such as Mamba, have demonstrated promising capabilities for long sequence modelling. In this study, we introduce a HSISR method (UVMSR) that combines U-Net and Mamba. UVMSR is a hybrid CNN-SSM module that integrates the local feature extraction capabilities of convolutional layers with the long-range dependency capturing abilities of SSMs. Specifically, we design the U-Net network structure for HSISR and apply V-Mamba within it for global modelling to capture spectral-spatial features. V-Mamba utilizes positional embedding to label the image sequences and employs a bidirectional state-space model for global context modelling. Additionally, a spectral-spatial feature expansion (SSFE) module is designed for better recovery of detailed information in hyperspectral images during the up-sampling process of U-Net. This paper evaluates the performance of UVMSR on the Chikusei, Pavia Centre, Houston 2018 and Cave datasets. The results of the comparison with other state-of-the-art methods demonstrate that UVMSR outperforms them, achieving unparalleled performance in reconstruction results. The code is available at https://github.com/TeresaTing/UVMSR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
裹被仔完成签到 ,获得积分20
刚刚
刚刚
1秒前
睿睿斌斌完成签到,获得积分10
1秒前
剪影改发布了新的文献求助10
2秒前
suwu发布了新的文献求助10
2秒前
xk发布了新的文献求助10
2秒前
2秒前
研小白完成签到,获得积分10
3秒前
lyyyyyy完成签到,获得积分10
3秒前
4秒前
风中高山发布了新的文献求助10
4秒前
小马甲应助Zobie采纳,获得30
5秒前
6秒前
你好阳光发布了新的文献求助10
6秒前
6秒前
张豪杰发布了新的文献求助10
6秒前
深情安青应助ventus采纳,获得10
7秒前
囤囤鼠应助cherry采纳,获得10
9秒前
s1kl完成签到,获得积分10
9秒前
dididodo发布了新的文献求助10
10秒前
ZHIXIANGWENG发布了新的文献求助10
11秒前
527完成签到,获得积分10
11秒前
酷波er应助sunshine采纳,获得10
12秒前
林屿溪发布了新的文献求助10
12秒前
12秒前
xk关闭了xk文献求助
13秒前
Diamond完成签到,获得积分10
14秒前
ZHIXIANGWENG发布了新的文献求助10
14秒前
在水一方应助张豪杰采纳,获得10
15秒前
15秒前
小白杨完成签到,获得积分10
15秒前
在水一方应助咕噜采纳,获得10
16秒前
suwu完成签到,获得积分10
16秒前
dididodo完成签到,获得积分10
16秒前
上官若男应助ZXL采纳,获得10
17秒前
深情的嘉熙完成签到,获得积分10
17秒前
你好应助勇敢的心采纳,获得10
17秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461806
求助须知:如何正确求助?哪些是违规求助? 3055500
关于积分的说明 9048149
捐赠科研通 2745215
什么是DOI,文献DOI怎么找? 1506088
科研通“疑难数据库(出版商)”最低求助积分说明 695974
邀请新用户注册赠送积分活动 695472