Feature selection based on self-information and entropy measures for incomplete neighborhood decision systems

特征选择 熵(时间箭头) 相互信息 计算机科学 人工智能 数据挖掘 粗集 特征(语言学) 计算智能 粒度计算 模式识别(心理学) 机器学习 数学 语言学 哲学 物理 量子力学
作者
Yuan Meng,Jiucheng Xu,Tao Li,Yuanhao Sun
出处
期刊:Complex & Intelligent Systems 卷期号:9 (2): 1773-1790 被引量:6
标识
DOI:10.1007/s40747-022-00882-8
摘要

Abstract For incomplete datasets with mixed numerical and symbolic features, feature selection based on neighborhood multi-granulation rough sets (NMRS) is developing rapidly. However, its evaluation function only considers the information contained in the lower approximation of the neighborhood decision, which easily leads to the loss of some information. To solve this problem, we construct a novel NMRS-based uncertain measure for feature selection, named neighborhood multi-granulation self-information-based pessimistic neighborhood multi-granulation tolerance joint entropy (PTSIJE), which can be used to incomplete neighborhood decision systems. First, from the algebra view, four kinds of neighborhood multi-granulation self-information measures of decision variables are proposed by using the upper and lower approximations of NMRS. We discuss the related properties, and find the fourth measure-lenient neighborhood multi-granulation self-information measure (NMSI) has better classification performance. Then, inspired by the algebra and information views simultaneously, a feature selection method based on PTSIJE is proposed. Finally, the Fisher score method is used to delete uncorrelated features to reduce the computational complexity for high-dimensional gene datasets, and a heuristic feature selection algorithm is raised to improve classification performance for mixed and incomplete datasets. Experimental results on 11 datasets show that our method selects fewer features and has higher classification accuracy than related methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
情怀应助乐园鸟采纳,获得10
1秒前
cbb关注了科研通微信公众号
1秒前
yang发布了新的文献求助10
2秒前
2秒前
小醒发布了新的文献求助10
2秒前
汉堡包应助快乐梦菡采纳,获得10
2秒前
丝垚完成签到 ,获得积分10
3秒前
林甜甜很甜完成签到,获得积分10
3秒前
Grace Lee完成签到,获得积分10
3秒前
爆米花应助Alan采纳,获得10
4秒前
liang完成签到,获得积分10
4秒前
harri发布了新的文献求助10
4秒前
7秒前
7秒前
8秒前
曹great完成签到,获得积分10
9秒前
9秒前
彭于晏应助yao采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
瓜瓜完成签到,获得积分10
10秒前
Billy应助泡芙采纳,获得30
10秒前
10秒前
科研通AI2S应助星星掉沟了采纳,获得10
12秒前
cbb发布了新的文献求助10
13秒前
idemipere发布了新的文献求助10
13秒前
独特冷荷给独特冷荷的求助进行了留言
14秒前
14秒前
15秒前
思源应助奇异物质采纳,获得10
15秒前
FashionBoy应助药化行者采纳,获得10
15秒前
慧灰huihui发布了新的文献求助10
16秒前
16秒前
王相博完成签到,获得积分10
17秒前
充电宝应助土豪的雪巧采纳,获得10
18秒前
18秒前
Alan发布了新的文献求助10
19秒前
19秒前
yznfly应助认真哈密瓜采纳,获得30
20秒前
yznfly应助认真哈密瓜采纳,获得30
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958968
求助须知:如何正确求助?哪些是违规求助? 3505216
关于积分的说明 11123184
捐赠科研通 3236828
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871455
科研通“疑难数据库(出版商)”最低求助积分说明 802794