亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Feature selection based on self-information and entropy measures for incomplete neighborhood decision systems

特征选择 熵(时间箭头) 相互信息 计算机科学 人工智能 数据挖掘 粗集 特征(语言学) 计算智能 粒度计算 模式识别(心理学) 机器学习 数学 哲学 物理 量子力学 语言学
作者
Meng Yuan,Jiucheng Xu,Tao Li,Yuanhao Sun
出处
期刊:Complex & Intelligent Systems 卷期号:9 (2): 1773-1790 被引量:13
标识
DOI:10.1007/s40747-022-00882-8
摘要

Abstract For incomplete datasets with mixed numerical and symbolic features, feature selection based on neighborhood multi-granulation rough sets (NMRS) is developing rapidly. However, its evaluation function only considers the information contained in the lower approximation of the neighborhood decision, which easily leads to the loss of some information. To solve this problem, we construct a novel NMRS-based uncertain measure for feature selection, named neighborhood multi-granulation self-information-based pessimistic neighborhood multi-granulation tolerance joint entropy (PTSIJE), which can be used to incomplete neighborhood decision systems. First, from the algebra view, four kinds of neighborhood multi-granulation self-information measures of decision variables are proposed by using the upper and lower approximations of NMRS. We discuss the related properties, and find the fourth measure-lenient neighborhood multi-granulation self-information measure (NMSI) has better classification performance. Then, inspired by the algebra and information views simultaneously, a feature selection method based on PTSIJE is proposed. Finally, the Fisher score method is used to delete uncorrelated features to reduce the computational complexity for high-dimensional gene datasets, and a heuristic feature selection algorithm is raised to improve classification performance for mixed and incomplete datasets. Experimental results on 11 datasets show that our method selects fewer features and has higher classification accuracy than related methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
嘟嘟嘟嘟发布了新的文献求助10
9秒前
9秒前
11秒前
科研通AI2S应助嘟嘟嘟嘟采纳,获得10
14秒前
14秒前
Criminology34应助科研通管家采纳,获得10
18秒前
Criminology34应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
Criminology34应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
31秒前
领导范儿应助111采纳,获得10
34秒前
量子星尘发布了新的文献求助10
37秒前
39秒前
量子星尘发布了新的文献求助10
48秒前
SHD完成签到,获得积分10
55秒前
凤迎雪飘完成签到,获得积分10
1分钟前
1分钟前
苏木应助大抵是能上岸的采纳,获得10
1分钟前
大抵是能上岸的完成签到,获得积分10
1分钟前
1分钟前
1分钟前
lanxinyue发布了新的文献求助10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Hello应助科研通管家采纳,获得10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
阿星完成签到,获得积分10
2分钟前
阿星发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764216
求助须知:如何正确求助?哪些是违规求助? 5549135
关于积分的说明 15405999
捐赠科研通 4899537
什么是DOI,文献DOI怎么找? 2635744
邀请新用户注册赠送积分活动 1583892
关于科研通互助平台的介绍 1539034