Feature selection based on self-information and entropy measures for incomplete neighborhood decision systems

特征选择 熵(时间箭头) 相互信息 计算机科学 人工智能 数据挖掘 粗集 特征(语言学) 计算智能 粒度计算 模式识别(心理学) 机器学习 数学 语言学 哲学 物理 量子力学
作者
Yuan Meng,Jiucheng Xu,Tao Li,Yuanhao Sun
出处
期刊:Complex & Intelligent Systems 卷期号:9 (2): 1773-1790 被引量:6
标识
DOI:10.1007/s40747-022-00882-8
摘要

Abstract For incomplete datasets with mixed numerical and symbolic features, feature selection based on neighborhood multi-granulation rough sets (NMRS) is developing rapidly. However, its evaluation function only considers the information contained in the lower approximation of the neighborhood decision, which easily leads to the loss of some information. To solve this problem, we construct a novel NMRS-based uncertain measure for feature selection, named neighborhood multi-granulation self-information-based pessimistic neighborhood multi-granulation tolerance joint entropy (PTSIJE), which can be used to incomplete neighborhood decision systems. First, from the algebra view, four kinds of neighborhood multi-granulation self-information measures of decision variables are proposed by using the upper and lower approximations of NMRS. We discuss the related properties, and find the fourth measure-lenient neighborhood multi-granulation self-information measure (NMSI) has better classification performance. Then, inspired by the algebra and information views simultaneously, a feature selection method based on PTSIJE is proposed. Finally, the Fisher score method is used to delete uncorrelated features to reduce the computational complexity for high-dimensional gene datasets, and a heuristic feature selection algorithm is raised to improve classification performance for mixed and incomplete datasets. Experimental results on 11 datasets show that our method selects fewer features and has higher classification accuracy than related methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助文静采纳,获得10
刚刚
1秒前
Hh发布了新的文献求助10
1秒前
SciGPT应助愉快白亦采纳,获得10
1秒前
1秒前
Lin琳发布了新的文献求助10
2秒前
闪闪的屁股完成签到,获得积分10
3秒前
4秒前
5秒前
12345发布了新的文献求助10
6秒前
6秒前
KingYugene发布了新的文献求助10
7秒前
sigmund完成签到,获得积分20
8秒前
8秒前
乐乐应助遇疯儿采纳,获得10
9秒前
9秒前
10秒前
不可以虫鸣吗我是大聪明完成签到 ,获得积分10
10秒前
浮游应助红糖小糍粑采纳,获得10
10秒前
Criminology34应助红糖小糍粑采纳,获得10
10秒前
11秒前
要减肥的半山完成签到,获得积分10
11秒前
12秒前
Lin琳完成签到,获得积分20
13秒前
文静发布了新的文献求助10
13秒前
小小超发布了新的文献求助10
13秒前
艾米尼发布了新的文献求助10
13秒前
KingYugene完成签到,获得积分10
14秒前
慕青应助hahaagain采纳,获得10
14秒前
15秒前
小二郎应助无奈的鞋子采纳,获得10
15秒前
yuanyuan完成签到,获得积分10
16秒前
科研通AI6应助Hh采纳,获得10
16秒前
浮游应助鹤九采纳,获得10
16秒前
17秒前
17秒前
文静完成签到,获得积分10
17秒前
小王发布了新的文献求助10
18秒前
18秒前
高分求助中
Comprehensive Chirality Second Edition 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4978174
求助须知:如何正确求助?哪些是违规求助? 4231199
关于积分的说明 13178705
捐赠科研通 4021946
什么是DOI,文献DOI怎么找? 2200483
邀请新用户注册赠送积分活动 1212958
关于科研通互助平台的介绍 1129258