Feature selection based on self-information and entropy measures for incomplete neighborhood decision systems

特征选择 熵(时间箭头) 相互信息 计算机科学 人工智能 数据挖掘 粗集 特征(语言学) 计算智能 粒度计算 模式识别(心理学) 机器学习 数学 哲学 物理 量子力学 语言学
作者
Meng Yuan,Jiucheng Xu,Tao Li,Yuanhao Sun
出处
期刊:Complex & Intelligent Systems 卷期号:9 (2): 1773-1790 被引量:13
标识
DOI:10.1007/s40747-022-00882-8
摘要

Abstract For incomplete datasets with mixed numerical and symbolic features, feature selection based on neighborhood multi-granulation rough sets (NMRS) is developing rapidly. However, its evaluation function only considers the information contained in the lower approximation of the neighborhood decision, which easily leads to the loss of some information. To solve this problem, we construct a novel NMRS-based uncertain measure for feature selection, named neighborhood multi-granulation self-information-based pessimistic neighborhood multi-granulation tolerance joint entropy (PTSIJE), which can be used to incomplete neighborhood decision systems. First, from the algebra view, four kinds of neighborhood multi-granulation self-information measures of decision variables are proposed by using the upper and lower approximations of NMRS. We discuss the related properties, and find the fourth measure-lenient neighborhood multi-granulation self-information measure (NMSI) has better classification performance. Then, inspired by the algebra and information views simultaneously, a feature selection method based on PTSIJE is proposed. Finally, the Fisher score method is used to delete uncorrelated features to reduce the computational complexity for high-dimensional gene datasets, and a heuristic feature selection algorithm is raised to improve classification performance for mixed and incomplete datasets. Experimental results on 11 datasets show that our method selects fewer features and has higher classification accuracy than related methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
Kamalika完成签到,获得积分10
3秒前
3秒前
3秒前
禹卓发布了新的文献求助10
4秒前
李爱国应助天天采纳,获得30
5秒前
6秒前
Enyu完成签到 ,获得积分10
6秒前
lmj完成签到,获得积分10
6秒前
花景铭发布了新的文献求助10
7秒前
幸福幻巧应助科研羊采纳,获得10
7秒前
幸福安白发布了新的文献求助10
7秒前
8秒前
9秒前
11秒前
11秒前
11秒前
科目三应助禹卓采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
彭于晏应助Fiy采纳,获得10
12秒前
12秒前
yangfan发布了新的文献求助10
12秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
HHHHH发布了新的文献求助10
15秒前
16秒前
18秒前
LPL发布了新的文献求助10
18秒前
勤奋的立果完成签到 ,获得积分10
18秒前
大个应助猪猪hero采纳,获得10
18秒前
LKC完成签到 ,获得积分10
19秒前
21秒前
997发布了新的文献求助10
21秒前
21秒前
CodeCraft应助李茉琳采纳,获得10
22秒前
GGbond完成签到,获得积分20
23秒前
胡霖完成签到,获得积分10
23秒前
skylee9527发布了新的文献求助10
23秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785302
求助须知:如何正确求助?哪些是违规求助? 5687230
关于积分的说明 15467275
捐赠科研通 4914416
什么是DOI,文献DOI怎么找? 2645196
邀请新用户注册赠送积分活动 1593006
关于科研通互助平台的介绍 1547351