Feature selection based on self-information and entropy measures for incomplete neighborhood decision systems

特征选择 熵(时间箭头) 相互信息 计算机科学 人工智能 数据挖掘 粗集 特征(语言学) 计算智能 粒度计算 模式识别(心理学) 机器学习 数学 语言学 哲学 物理 量子力学
作者
Meng Yuan,Jiucheng Xu,Tao Li,Yuanhao Sun
出处
期刊:Complex & Intelligent Systems 卷期号:9 (2): 1773-1790 被引量:13
标识
DOI:10.1007/s40747-022-00882-8
摘要

Abstract For incomplete datasets with mixed numerical and symbolic features, feature selection based on neighborhood multi-granulation rough sets (NMRS) is developing rapidly. However, its evaluation function only considers the information contained in the lower approximation of the neighborhood decision, which easily leads to the loss of some information. To solve this problem, we construct a novel NMRS-based uncertain measure for feature selection, named neighborhood multi-granulation self-information-based pessimistic neighborhood multi-granulation tolerance joint entropy (PTSIJE), which can be used to incomplete neighborhood decision systems. First, from the algebra view, four kinds of neighborhood multi-granulation self-information measures of decision variables are proposed by using the upper and lower approximations of NMRS. We discuss the related properties, and find the fourth measure-lenient neighborhood multi-granulation self-information measure (NMSI) has better classification performance. Then, inspired by the algebra and information views simultaneously, a feature selection method based on PTSIJE is proposed. Finally, the Fisher score method is used to delete uncorrelated features to reduce the computational complexity for high-dimensional gene datasets, and a heuristic feature selection algorithm is raised to improve classification performance for mixed and incomplete datasets. Experimental results on 11 datasets show that our method selects fewer features and has higher classification accuracy than related methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
清欢发布了新的文献求助10
刚刚
萧时完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
打打应助陌路孤星采纳,获得10
3秒前
不吃香菜发布了新的文献求助10
3秒前
4秒前
故里完成签到,获得积分10
4秒前
kaka完成签到,获得积分10
5秒前
传奇3应助小七采纳,获得10
6秒前
温暖凡灵完成签到,获得积分10
6秒前
louaq完成签到,获得积分10
6秒前
浮游应助晒黑的雪碧采纳,获得30
6秒前
7秒前
8秒前
8秒前
8秒前
nazi完成签到,获得积分10
8秒前
8秒前
8秒前
wangzai完成签到,获得积分10
8秒前
Sc1ivez发布了新的文献求助10
9秒前
Mic应助nannan采纳,获得10
9秒前
文艺的冬卉完成签到,获得积分20
9秒前
轨迹发布了新的文献求助10
10秒前
Vet周完成签到,获得积分10
11秒前
wanci应助激动的老太采纳,获得10
11秒前
sui发布了新的文献求助30
11秒前
丽丽完成签到,获得积分10
12秒前
可爱的函函应助zzz采纳,获得10
12秒前
姚世娇完成签到 ,获得积分10
13秒前
qin发布了新的文献求助10
13秒前
wsx完成签到,获得积分10
13秒前
打击8发布了新的文献求助10
14秒前
天暗星发布了新的文献求助10
14秒前
西西完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435804
求助须知:如何正确求助?哪些是违规求助? 4548006
关于积分的说明 14211638
捐赠科研通 4468203
什么是DOI,文献DOI怎么找? 2448968
邀请新用户注册赠送积分活动 1439889
关于科研通互助平台的介绍 1416503