Feature selection based on self-information and entropy measures for incomplete neighborhood decision systems

特征选择 熵(时间箭头) 相互信息 计算机科学 人工智能 数据挖掘 粗集 特征(语言学) 计算智能 粒度计算 模式识别(心理学) 机器学习 数学 哲学 物理 量子力学 语言学
作者
Yuan Meng,Jiucheng Xu,Tao Li,Yuanhao Sun
出处
期刊:Complex & Intelligent Systems 卷期号:9 (2): 1773-1790 被引量:6
标识
DOI:10.1007/s40747-022-00882-8
摘要

Abstract For incomplete datasets with mixed numerical and symbolic features, feature selection based on neighborhood multi-granulation rough sets (NMRS) is developing rapidly. However, its evaluation function only considers the information contained in the lower approximation of the neighborhood decision, which easily leads to the loss of some information. To solve this problem, we construct a novel NMRS-based uncertain measure for feature selection, named neighborhood multi-granulation self-information-based pessimistic neighborhood multi-granulation tolerance joint entropy (PTSIJE), which can be used to incomplete neighborhood decision systems. First, from the algebra view, four kinds of neighborhood multi-granulation self-information measures of decision variables are proposed by using the upper and lower approximations of NMRS. We discuss the related properties, and find the fourth measure-lenient neighborhood multi-granulation self-information measure (NMSI) has better classification performance. Then, inspired by the algebra and information views simultaneously, a feature selection method based on PTSIJE is proposed. Finally, the Fisher score method is used to delete uncorrelated features to reduce the computational complexity for high-dimensional gene datasets, and a heuristic feature selection algorithm is raised to improve classification performance for mixed and incomplete datasets. Experimental results on 11 datasets show that our method selects fewer features and has higher classification accuracy than related methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卑微科研发布了新的文献求助10
刚刚
幸福鸿发布了新的文献求助30
刚刚
rui完成签到 ,获得积分10
1秒前
情怀应助路飞采纳,获得10
2秒前
苦衷乐发布了新的文献求助10
2秒前
阳pipi发布了新的文献求助10
2秒前
打打应助三硕采纳,获得30
2秒前
精明人雄发布了新的文献求助10
3秒前
hl发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
淡淡易云完成签到 ,获得积分10
5秒前
6秒前
6秒前
香蕉觅云应助姚女士采纳,获得10
6秒前
小马甲应助逍遥采纳,获得10
7秒前
桐桐应助hl采纳,获得10
9秒前
9秒前
斯文败类应助阳pipi采纳,获得10
10秒前
10秒前
10秒前
宋莱文发布了新的文献求助10
10秒前
shmily发布了新的文献求助10
10秒前
艳艳子发布了新的文献求助20
10秒前
优秀不愁发布了新的文献求助10
10秒前
Wk_Ye发布了新的文献求助10
11秒前
12秒前
12秒前
哄哄发布了新的文献求助10
13秒前
小二郎应助幸福鸿采纳,获得10
13秒前
路飞发布了新的文献求助10
14秒前
sunzhuxi发布了新的文献求助10
14秒前
自信的谷南完成签到,获得积分10
15秒前
15秒前
16秒前
念yft发布了新的文献求助10
16秒前
16秒前
16秒前
Wk_Ye完成签到,获得积分10
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260615
求助须知:如何正确求助?哪些是违规求助? 2901766
关于积分的说明 8317059
捐赠科研通 2571348
什么是DOI,文献DOI怎么找? 1397005
科研通“疑难数据库(出版商)”最低求助积分说明 653622
邀请新用户注册赠送积分活动 632087