A deep learning approach of heartbeat classification for the single-lead ECG signals and inter-patient paradigm

心跳 人工智能 深度学习 计算机科学 模式识别(心理学) 异常 机器学习 铅(地质) 医学 计算机安全 地貌学 精神科 地质学
作者
Hanguang Xiao,Banglin Zhang,Qingling Xia,Bin Jiang,Zhiqiang Ran,Xiuhong Zhu,Wangwang Song
标识
DOI:10.1117/12.2643497
摘要

The corresponding arrhythmia often occurs before the onset of cardiovascular disease (CVD), electrocardiogram (ECG) can more intuitively detect any abnormality in the heartbeat as a sign of arrhythmia. There are many traditional ECG classification methods, but these methods are constrained human costs and inaccuracy since they rely on manually extracting features, and cannot fully mine the deep pathological information hidden in the data. Consequently, a novel deep learning model based on single-lead ECG signals and inter-patient paradigm is developed to improve the shortcomings of traditional ECG heartbeat classification. The residual connection is adopted in the proposed method to improve classification accuracy and alleviate the gradient disappearance issue. Heartbeat complexes that included a targeted heartbeat and an adjacent heartbeat is selected as the input of the model. The MIT-BIH arrhythmia database is employed to valid proposed method. Besides, a focal loss function is used to address the classes imbalance of the database. The experimental results show that the positive predictive values of the proposed classification method for N, S, V, and F are 99.10%, 96.80%, 61.32%, and 95.36%, respectively. In addition, the sensitivity values are 95.83%, 95.54%, 90.43%, and 84.79%; the specificity values are 92.96%, 99.88%, 96.05%, and 99.97%, respectively. Compared with the art-of-state inter-patient ECG heartbeat classification approaches, our proposed approach achieved better results. Therefore, the proposed deep learning model of heartbeat classification is effective and feasible for the single-lead ECG signals and interpatient paradigm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY发布了新的文献求助10
刚刚
1秒前
怕孤单的丁真完成签到,获得积分10
1秒前
yx_cheng应助sunsold采纳,获得30
1秒前
huangninghuang完成签到,获得积分10
2秒前
鱼跃完成签到,获得积分10
2秒前
研友_nvGWwZ发布了新的文献求助10
2秒前
3秒前
3秒前
鳗鱼盼夏完成签到,获得积分10
4秒前
4秒前
九月完成签到,获得积分10
4秒前
彭于晏应助烩面大师采纳,获得10
4秒前
能干的cen完成签到 ,获得积分10
4秒前
英俊的铭应助fs采纳,获得10
4秒前
丘比特应助fs采纳,获得10
4秒前
5秒前
可以发布了新的文献求助10
5秒前
科研通AI2S应助beikou采纳,获得10
5秒前
可爱丸子完成签到,获得积分10
5秒前
5秒前
6秒前
Ma完成签到,获得积分10
6秒前
Owen应助Robe采纳,获得10
7秒前
Wang发布了新的文献求助10
7秒前
所所应助简单幸福采纳,获得10
8秒前
FashionBoy应助YY采纳,获得10
9秒前
kirito发布了新的文献求助10
9秒前
Ethan完成签到,获得积分10
9秒前
zy_完成签到,获得积分10
9秒前
香蕉易形关注了科研通微信公众号
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
慕青应助Yeee采纳,获得10
11秒前
beituo完成签到,获得积分10
12秒前
12秒前
烂漫代曼完成签到,获得积分10
12秒前
ding应助呼呼采纳,获得10
13秒前
yzzzz发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582