A deep learning approach of heartbeat classification for the single-lead ECG signals and inter-patient paradigm

心跳 人工智能 深度学习 计算机科学 模式识别(心理学) 异常 机器学习 铅(地质) 医学 计算机安全 地貌学 精神科 地质学
作者
Hanguang Xiao,Banglin Zhang,Qingling Xia,Bin Jiang,Zhiqiang Ran,Xiuhong Zhu,Wangwang Song
标识
DOI:10.1117/12.2643497
摘要

The corresponding arrhythmia often occurs before the onset of cardiovascular disease (CVD), electrocardiogram (ECG) can more intuitively detect any abnormality in the heartbeat as a sign of arrhythmia. There are many traditional ECG classification methods, but these methods are constrained human costs and inaccuracy since they rely on manually extracting features, and cannot fully mine the deep pathological information hidden in the data. Consequently, a novel deep learning model based on single-lead ECG signals and inter-patient paradigm is developed to improve the shortcomings of traditional ECG heartbeat classification. The residual connection is adopted in the proposed method to improve classification accuracy and alleviate the gradient disappearance issue. Heartbeat complexes that included a targeted heartbeat and an adjacent heartbeat is selected as the input of the model. The MIT-BIH arrhythmia database is employed to valid proposed method. Besides, a focal loss function is used to address the classes imbalance of the database. The experimental results show that the positive predictive values of the proposed classification method for N, S, V, and F are 99.10%, 96.80%, 61.32%, and 95.36%, respectively. In addition, the sensitivity values are 95.83%, 95.54%, 90.43%, and 84.79%; the specificity values are 92.96%, 99.88%, 96.05%, and 99.97%, respectively. Compared with the art-of-state inter-patient ECG heartbeat classification approaches, our proposed approach achieved better results. Therefore, the proposed deep learning model of heartbeat classification is effective and feasible for the single-lead ECG signals and interpatient paradigm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助nenshen采纳,获得10
刚刚
跳跃富完成签到,获得积分10
刚刚
朝阳应助yatou5651采纳,获得30
刚刚
彭于晏应助清晨采纳,获得10
1秒前
风筝与亭完成签到 ,获得积分10
1秒前
赣南橙完成签到,获得积分10
2秒前
2秒前
吴中雪完成签到,获得积分10
3秒前
huhu完成签到,获得积分10
3秒前
思源应助拉长的念珍采纳,获得10
4秒前
小鸭子应助谁来帮帮朕采纳,获得10
4秒前
11完成签到,获得积分10
5秒前
5秒前
forest发布了新的文献求助10
5秒前
7秒前
宜醉宜游宜睡应助喬木采纳,获得10
7秒前
保持呼吸完成签到,获得积分20
7秒前
拼搏听寒完成签到,获得积分10
8秒前
思思发布了新的文献求助10
8秒前
_u_ii应助赣南橙采纳,获得10
10秒前
彭于晏应助卡卡采纳,获得30
10秒前
元谷雪发布了新的文献求助10
10秒前
10秒前
个性的振家完成签到,获得积分10
10秒前
Hello应助跳跃富采纳,获得10
10秒前
万能图书馆应助风筝与亭采纳,获得10
11秒前
摩卡发布了新的文献求助10
12秒前
13秒前
forest完成签到,获得积分10
13秒前
cocolu应助玥来玥好采纳,获得10
13秒前
领导范儿应助清晨采纳,获得10
14秒前
qikuo完成签到,获得积分10
14秒前
Lydia发布了新的文献求助10
16秒前
asd发布了新的文献求助30
16秒前
拼搏听寒发布了新的文献求助10
16秒前
20秒前
21秒前
思思完成签到 ,获得积分10
22秒前
23秒前
李健应助雨醉东风采纳,获得10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312299
求助须知:如何正确求助?哪些是违规求助? 2944955
关于积分的说明 8522182
捐赠科研通 2620750
什么是DOI,文献DOI怎么找? 1433015
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650153