亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Pagml: Precise Alignment Guided Metric Learning for Sketch-Based 3d Shape Retrieval

素描 公制(单位) 人工智能 计算机科学 情报检索 计算机视觉 算法 工程类 运营管理
作者
Shaojin Bai,Jing Bai,Hao Xu,Jiwen Tuo,Min Liu
标识
DOI:10.2139/ssrn.4370100
摘要

Sketch-based 3D shape retrieval has always been a hot research topic in the computer vision community. The main challenge is to alleviate the cross-modality discrepancies such that the retrieval accuracy can be improved. In this paper, we propose a novel Precise Alignment Guided Metric Learning (PAGML) method based on master-auxiliary cross-modality retrieval framework. An auxiliary learning network is developed to indirectly guide the master learning model to extract features of rich semantic information, so as to achieve a semantic alignment between the cross-modality data. Furthermore, considering that the unbalanced data distributions led to the poor uniformity in the common embedding space, a loss function dedicated for the imbalanced cross-modality data is designed to achieve a rigid alignment between sketches and 3D shapes of the same category by pulling their rich semantic representations to the rigid center of the category. As a result, a more precise alignment between the cross-modality embedding features of same category is approached gradually, which further alleviates the cross-modality discrepancies and improves the cross-modality retrieval accuracies. Extensive experiments on two public benchmark datasets demonstrate that the proposed PAGML surpasses the state-of-the-art methods in retrieval accuracy and has excellent generalization abilities to unseen classes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
世良发布了新的文献求助10
5秒前
搜集达人应助世良采纳,获得10
18秒前
24秒前
26秒前
体贴花卷发布了新的文献求助10
30秒前
38秒前
daidai发布了新的文献求助10
43秒前
哈哈哈开开心心完成签到,获得积分10
48秒前
52秒前
CipherSage应助VV2001采纳,获得10
54秒前
flyinthesky完成签到,获得积分10
54秒前
daidai完成签到,获得积分10
57秒前
1分钟前
世良发布了新的文献求助10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
归尘应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
张晓祁完成签到,获得积分10
1分钟前
优美的小笨蛋应助sunaijia采纳,获得10
1分钟前
桐桐应助世良采纳,获得10
1分钟前
艾米发布了新的文献求助10
1分钟前
yueying完成签到,获得积分10
1分钟前
今后应助体贴花卷采纳,获得10
1分钟前
1分钟前
MchemG应助chen采纳,获得10
1分钟前
艾米完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650806
求助须知:如何正确求助?哪些是违规求助? 4781743
关于积分的说明 15052599
捐赠科研通 4809617
什么是DOI,文献DOI怎么找? 2572419
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487399