APMSA: Adversarial Perturbation Against Model Stealing Attacks

计算机科学 对手 杠杆(统计) 对抗制 威胁模型 低信心 云计算 计算机安全 数据建模 人工智能 数据库 操作系统 心理学 社会心理学
作者
Jiliang Zhang,Shuang Peng,Yansong Gao,Zhi Zhang,Qinghui Hong
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:18: 1667-1679 被引量:57
标识
DOI:10.1109/tifs.2023.3246766
摘要

Training a Deep Learning (DL) model requires proprietary data and computing-intensive resources. To recoup their training costs, a model provider can monetize DL models through Machine Learning as a Service (MLaaS). Generally, the model is deployed at the cloud, while providing a publicly accessible Application Programming Interface (API) for paid queries to obtain benefits. However, model stealing attacks have posed security threats to this model monetizing scheme as they steal the model without paying for future extensive queries. Specifically, an adversary queries a targeted model to obtain input-output pairs and thus infer the model’s internal working mechanism by reverse-engineering a substitute model, which has deprived model owner’s business advantage and leaked the privacy of the model. In this work, we observe that the confidence vector or the top-1 confidence returned from the model under attack (MUA) varies in a relative large degree given different queried inputs. Therefore, rich internal information of the MUA is leaked to the attacker that facilities her reconstruction of a substitute model. We thus propose to leverage adversarial confidence perturbation to hide such varied confidence distribution given different queries, consequentially against model stealing attacks (dubbed as APMSA). In other words, the confidence vectors returned now is similar for queries from a specific category, considerably reducing information leakage of the MUA. To achieve this objective, through automated optimization, we constructively add delicate noise into per input query to make its confidence close to the decision boundary of the MUA. Generally, this process is achieved in a similar means of crafting adversarial examples but with a distinction that the hard label is preserved to be the same as the queried input. This retains the inference utility (i.e., without sacrificing the inference accuracy) for normal users but bounded the leaked confidence information to the attacker in a small constrained area (i.e., close to decision boundary). The later renders greatly deteriorated accuracy of the attacker’s substitute model. As the APMSA serves as a plug-in front-end and requires no change to the MUA, it is thus generic and easy to deploy. The high efficacy of APMSA is validated through experiments on datasets of CIFAR10 and GTSRB. Given a MUA model of ResNet-18 on the CIFAR10, our defense can degrade the accuracy of the stolen model by up to 15% (rendering the stolen model useless to a large extent) with 0% accuracy drop for normal user’s hard-label inference request.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火山完成签到 ,获得积分10
刚刚
222发布了新的文献求助10
刚刚
浩浩完成签到 ,获得积分10
刚刚
1秒前
...完成签到,获得积分10
1秒前
1秒前
000发布了新的文献求助30
1秒前
鲁滨逊完成签到 ,获得积分10
1秒前
溜了溜了完成签到,获得积分10
1秒前
科研通AI2S应助Violet采纳,获得10
1秒前
板栗完成签到,获得积分10
1秒前
翟如风发布了新的文献求助10
2秒前
GongSyi完成签到 ,获得积分10
2秒前
刘若鑫完成签到,获得积分10
2秒前
zq1992nl完成签到,获得积分10
2秒前
猩猩完成签到,获得积分10
4秒前
4秒前
willow完成签到 ,获得积分10
5秒前
luojie完成签到 ,获得积分10
5秒前
真难啊发布了新的文献求助10
5秒前
tangchao完成签到,获得积分10
6秒前
彩色半烟完成签到,获得积分10
7秒前
靓丽行天完成签到,获得积分10
7秒前
Dipsy完成签到,获得积分10
8秒前
陈豆豆完成签到,获得积分10
9秒前
科研通AI2S应助动听乐珍采纳,获得30
10秒前
小鱼爱吃肉应助动听乐珍采纳,获得10
10秒前
清风完成签到 ,获得积分10
10秒前
海豚完成签到 ,获得积分10
11秒前
Hello应助赤安采纳,获得10
11秒前
12秒前
juanlin2011完成签到,获得积分10
12秒前
芝麻糊完成签到,获得积分20
12秒前
Clover04发布了新的文献求助10
12秒前
12秒前
非常完成签到,获得积分10
12秒前
13秒前
Zhai完成签到 ,获得积分10
14秒前
简易完成签到 ,获得积分10
15秒前
学分完成签到 ,获得积分10
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257240
求助须知:如何正确求助?哪些是违规求助? 2899132
关于积分的说明 8303865
捐赠科研通 2568424
什么是DOI,文献DOI怎么找? 1395064
科研通“疑难数据库(出版商)”最低求助积分说明 652936
邀请新用户注册赠送积分活动 630683