智能电表
智能电网
计算机科学
概率逻辑
概率预测
高斯分布
期限(时间)
人工神经网络
参数统计
可再生能源
自回归模型
多项式的
非参数统计
控制理论(社会学)
数学优化
计量经济学
人工智能
工程类
控制(管理)
数学
统计
电气工程
数学分析
物理
量子力学
作者
Marcel Arpogaus,Marcus Voß,Beate Sick,Mark Nigge-Uricher,Oliver Durr N
出处
期刊:IEEE Transactions on Smart Grid
[Institute of Electrical and Electronics Engineers]
日期:2023-11-01
卷期号:14 (6): 4902-4911
被引量:5
标识
DOI:10.1109/tsg.2023.3254890
摘要
The transition to a fully renewable energy grid requires better forecasting of demand at the low-voltage level to increase efficiency and ensure reliable control. However, high fluctuations and increasing electrification cause huge forecast variability, not reflected in traditional point estimates. Probabilistic load forecasts take future uncertainties into account and thus allow more informed decision-making for the planning and operation of low-carbon energy systems. We propose an approach for flexible conditional density forecasting of short-term load based on Bernstein polynomial normalizing flows, where a neural network controls the parameters of the flow. In an empirical study with 363 smart meter customers, our density predictions compare favorably against Gaussian and Gaussian mixture densities. Also, they outperform a non-parametric approach based on the pinball loss for 24h-ahead load forecasting for two different neural network architectures.
科研通智能强力驱动
Strongly Powered by AbleSci AI