Low-light image enhancement with knowledge distillation

计算机科学 卷积神经网络 人工智能 人工神经网络 图像(数学) 知识转移 蒸馏 深度学习 机器学习 计算机视觉 知识管理 有机化学 化学
作者
Ziwen Li,Yuehuan Wang,Jinpu Zhang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:518: 332-343 被引量:38
标识
DOI:10.1016/j.neucom.2022.10.083
摘要

Low-light image enhancement studies how to improve the quality of images captured under poor lighting conditions, which is of real-world importance. Currently, convolutional neural network (CNN)-based methods with state-of-the-art performance have become the mainstream of research. However, most CNN-based methods improve the performance of the algorithm by increasing the width and depth of the neural network, which requires large computing device resources. In this paper, we propose a knowledge distillation method for low light image enhancement. The proposed method uses a teacher-student framework in which the teacher network tries to transfer the rich knowledge to the student network. The student network learns the knowledge of image enhancement under the supervision of ground truth images and under the guidance of the teacher network simultaneously. Knowledge transfer between the teacher-student network is accomplished by distillation loss based on attention maps. We designed a gradient-guided low-light image enhancement network that can be divided into an enhancement branch and a gradient branch, where the enhancement branch is learned under the guidance of the gradient branch to better preserve structural information. The teacher and student networks use a similar structure, but they have different model sizes. The teacher network has more parameters and more powerful learning capabilities than the student network. With the help of knowledge distillation, our approach can improve the performance of the student network without increasing the computational burden during the testing phase. The qualitative and quantitative experimental results demonstrate the superiority of our method compared to the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Any发布了新的文献求助10
刚刚
刚刚
1秒前
huishoushen完成签到 ,获得积分10
1秒前
1秒前
思源应助紧张的紫文采纳,获得10
2秒前
ALL完成签到,获得积分10
3秒前
5秒前
赘婿应助xuqiansd采纳,获得10
5秒前
芝诺完成签到,获得积分10
5秒前
陈傲雪发布了新的文献求助10
5秒前
Dr发布了新的文献求助10
5秒前
宁少爷发布了新的文献求助10
6秒前
6秒前
彩彩完成签到,获得积分10
6秒前
阳光香水发布了新的文献求助10
6秒前
7秒前
7秒前
9秒前
10秒前
量子星尘发布了新的文献求助50
11秒前
11秒前
山楂卷关注了科研通微信公众号
11秒前
杨杨杨发布了新的文献求助30
12秒前
烟花应助奖品肉麻膏耶采纳,获得10
13秒前
指数爆炸发布了新的文献求助10
14秒前
mwzeng发布了新的文献求助10
14秒前
赘婿应助ziyiziyi采纳,获得10
14秒前
李慕溪发布了新的文献求助20
14秒前
JACKPAN完成签到,获得积分10
14秒前
西瓜妹发布了新的文献求助10
16秒前
科研通AI5应助身处人海采纳,获得10
17秒前
Hao完成签到,获得积分10
18秒前
酷波er应助陈傲雪采纳,获得10
18秒前
顺利的小懒猪完成签到 ,获得积分10
19秒前
一棵树莓给一棵树莓的求助进行了留言
19秒前
小蘑菇应助JACKPAN采纳,获得10
22秒前
YoroYoshi完成签到,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089378
求助须知:如何正确求助?哪些是违规求助? 4304127
关于积分的说明 13413480
捐赠科研通 4129704
什么是DOI,文献DOI怎么找? 2261721
邀请新用户注册赠送积分活动 1265791
关于科研通互助平台的介绍 1200360