Low-light image enhancement with knowledge distillation

计算机科学 卷积神经网络 人工智能 人工神经网络 图像(数学) 知识转移 蒸馏 深度学习 机器学习 计算机视觉 知识管理 有机化学 化学
作者
Ziwen Li,Yuehuan Wang,Jinpu Zhang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:518: 332-343 被引量:38
标识
DOI:10.1016/j.neucom.2022.10.083
摘要

Low-light image enhancement studies how to improve the quality of images captured under poor lighting conditions, which is of real-world importance. Currently, convolutional neural network (CNN)-based methods with state-of-the-art performance have become the mainstream of research. However, most CNN-based methods improve the performance of the algorithm by increasing the width and depth of the neural network, which requires large computing device resources. In this paper, we propose a knowledge distillation method for low light image enhancement. The proposed method uses a teacher-student framework in which the teacher network tries to transfer the rich knowledge to the student network. The student network learns the knowledge of image enhancement under the supervision of ground truth images and under the guidance of the teacher network simultaneously. Knowledge transfer between the teacher-student network is accomplished by distillation loss based on attention maps. We designed a gradient-guided low-light image enhancement network that can be divided into an enhancement branch and a gradient branch, where the enhancement branch is learned under the guidance of the gradient branch to better preserve structural information. The teacher and student networks use a similar structure, but they have different model sizes. The teacher network has more parameters and more powerful learning capabilities than the student network. With the help of knowledge distillation, our approach can improve the performance of the student network without increasing the computational burden during the testing phase. The qualitative and quantitative experimental results demonstrate the superiority of our method compared to the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助爱听歌的乐天采纳,获得20
2秒前
3秒前
just关注了科研通微信公众号
3秒前
Orange应助大侦探皮卡丘采纳,获得10
4秒前
5秒前
拂晓完成签到 ,获得积分10
5秒前
杨自强发布了新的文献求助10
6秒前
ry完成签到,获得积分10
6秒前
8秒前
njsj完成签到,获得积分10
8秒前
大力世界发布了新的文献求助10
9秒前
冷傲天川发布了新的文献求助10
10秒前
yar应助寻寻觅觅冷冷清清采纳,获得10
11秒前
waiting发布了新的文献求助10
13秒前
13秒前
13秒前
卢小白完成签到,获得积分10
14秒前
demom完成签到 ,获得积分10
14秒前
DM完成签到,获得积分10
14秒前
孟德尔的豌豆完成签到,获得积分10
15秒前
开放惜寒发布了新的文献求助10
15秒前
16秒前
yar给海龟的求助进行了留言
17秒前
DM发布了新的文献求助10
17秒前
just发布了新的文献求助10
18秒前
彼黍离离完成签到 ,获得积分10
20秒前
20秒前
希望天下0贩的0应助千前采纳,获得10
20秒前
21秒前
XXXX完成签到,获得积分10
21秒前
22秒前
23秒前
蓝桉完成签到,获得积分10
24秒前
科研通AI2S应助大力世界采纳,获得10
24秒前
25秒前
XXXX发布了新的文献求助10
25秒前
无敌原神大王完成签到,获得积分10
25秒前
执着的半邪完成签到,获得积分10
26秒前
蓝桉发布了新的文献求助10
26秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966989
求助须知:如何正确求助?哪些是违规求助? 3512429
关于积分的说明 11163148
捐赠科研通 3247241
什么是DOI,文献DOI怎么找? 1793778
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432