已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Low-light image enhancement with knowledge distillation

计算机科学 卷积神经网络 人工智能 人工神经网络 图像(数学) 知识转移 蒸馏 深度学习 机器学习 计算机视觉 知识管理 有机化学 化学
作者
Ziwen Li,Yuehuan Wang,Jinpu Zhang
出处
期刊:Neurocomputing [Elsevier]
卷期号:518: 332-343 被引量:38
标识
DOI:10.1016/j.neucom.2022.10.083
摘要

Low-light image enhancement studies how to improve the quality of images captured under poor lighting conditions, which is of real-world importance. Currently, convolutional neural network (CNN)-based methods with state-of-the-art performance have become the mainstream of research. However, most CNN-based methods improve the performance of the algorithm by increasing the width and depth of the neural network, which requires large computing device resources. In this paper, we propose a knowledge distillation method for low light image enhancement. The proposed method uses a teacher-student framework in which the teacher network tries to transfer the rich knowledge to the student network. The student network learns the knowledge of image enhancement under the supervision of ground truth images and under the guidance of the teacher network simultaneously. Knowledge transfer between the teacher-student network is accomplished by distillation loss based on attention maps. We designed a gradient-guided low-light image enhancement network that can be divided into an enhancement branch and a gradient branch, where the enhancement branch is learned under the guidance of the gradient branch to better preserve structural information. The teacher and student networks use a similar structure, but they have different model sizes. The teacher network has more parameters and more powerful learning capabilities than the student network. With the help of knowledge distillation, our approach can improve the performance of the student network without increasing the computational burden during the testing phase. The qualitative and quantitative experimental results demonstrate the superiority of our method compared to the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
old幽露露发布了新的文献求助10
1秒前
1秒前
5秒前
科研通AI2S应助Alum采纳,获得10
5秒前
向蒋丞选手学习完成签到,获得积分10
9秒前
DL应助随便取采纳,获得10
9秒前
生动娩发布了新的文献求助10
10秒前
10秒前
英姑应助科研小贩采纳,获得10
12秒前
626完成签到,获得积分10
13秒前
大方海燕完成签到,获得积分10
13秒前
15秒前
所所应助可乐要开心采纳,获得30
15秒前
烂漫半山完成签到,获得积分10
16秒前
16秒前
17秒前
20秒前
Ava应助阳光雨采纳,获得10
20秒前
寒冷又晴发布了新的文献求助10
20秒前
领导范儿应助Brisk采纳,获得10
21秒前
yuanyuan发布了新的文献求助10
21秒前
生动娩发布了新的文献求助10
22秒前
土豪的飞荷完成签到 ,获得积分10
23秒前
24秒前
萧幻枫完成签到 ,获得积分10
24秒前
123321发布了新的文献求助30
25秒前
我是老大应助自觉的溪灵采纳,获得10
25秒前
Ava应助Zhangyitian采纳,获得30
25秒前
Hanayu完成签到 ,获得积分0
26秒前
酷波er应助寒冷又晴采纳,获得10
27秒前
小鹿斑比完成签到 ,获得积分10
27秒前
28秒前
烂漫半山发布了新的文献求助10
28秒前
天天快乐应助贪玩香烟采纳,获得10
29秒前
小二郎应助愉快的依霜采纳,获得10
31秒前
ll发布了新的文献求助10
32秒前
111发布了新的文献求助10
33秒前
unless完成签到,获得积分10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599471
求助须知:如何正确求助?哪些是违规求助? 4685106
关于积分的说明 14837681
捐赠科研通 4668281
什么是DOI,文献DOI怎么找? 2537976
邀请新用户注册赠送积分活动 1505410
关于科研通互助平台的介绍 1470783