已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Low-light image enhancement with knowledge distillation

计算机科学 卷积神经网络 人工智能 人工神经网络 图像(数学) 知识转移 蒸馏 深度学习 机器学习 计算机视觉 知识管理 有机化学 化学
作者
Ziwen Li,Yuehuan Wang,Jinpu Zhang
出处
期刊:Neurocomputing [Elsevier]
卷期号:518: 332-343 被引量:38
标识
DOI:10.1016/j.neucom.2022.10.083
摘要

Low-light image enhancement studies how to improve the quality of images captured under poor lighting conditions, which is of real-world importance. Currently, convolutional neural network (CNN)-based methods with state-of-the-art performance have become the mainstream of research. However, most CNN-based methods improve the performance of the algorithm by increasing the width and depth of the neural network, which requires large computing device resources. In this paper, we propose a knowledge distillation method for low light image enhancement. The proposed method uses a teacher-student framework in which the teacher network tries to transfer the rich knowledge to the student network. The student network learns the knowledge of image enhancement under the supervision of ground truth images and under the guidance of the teacher network simultaneously. Knowledge transfer between the teacher-student network is accomplished by distillation loss based on attention maps. We designed a gradient-guided low-light image enhancement network that can be divided into an enhancement branch and a gradient branch, where the enhancement branch is learned under the guidance of the gradient branch to better preserve structural information. The teacher and student networks use a similar structure, but they have different model sizes. The teacher network has more parameters and more powerful learning capabilities than the student network. With the help of knowledge distillation, our approach can improve the performance of the student network without increasing the computational burden during the testing phase. The qualitative and quantitative experimental results demonstrate the superiority of our method compared to the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萌宠完成签到,获得积分10
刚刚
zhong关注了科研通微信公众号
1秒前
田様应助南小槿采纳,获得10
1秒前
从容的小霸王完成签到,获得积分20
2秒前
4秒前
Owen应助AAAA采纳,获得10
5秒前
热心的香水关注了科研通微信公众号
6秒前
7秒前
hotdx发布了新的文献求助10
8秒前
8秒前
华仔应助呆呆采纳,获得10
10秒前
10秒前
漂亮水绿发布了新的文献求助10
13秒前
郭柳含给郭柳含的求助进行了留言
14秒前
17秒前
17秒前
皮卡丘完成签到 ,获得积分0
17秒前
哈哈悦完成签到,获得积分10
18秒前
19秒前
19秒前
今天努力学习了吗完成签到,获得积分10
20秒前
20秒前
犹豫囧发布了新的文献求助30
20秒前
20秒前
20秒前
CodeCraft应助Youth采纳,获得10
22秒前
白糖发布了新的文献求助10
23秒前
zhong发布了新的文献求助10
23秒前
上官若男应助忧虑的代容采纳,获得10
24秒前
25秒前
lhs完成签到,获得积分20
27秒前
27秒前
情怀应助顺心人达采纳,获得10
28秒前
zzzdx发布了新的文献求助10
31秒前
32秒前
田雨弘完成签到 ,获得积分10
33秒前
33秒前
33秒前
34秒前
接两块钱应助一一采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779009
求助须知:如何正确求助?哪些是违规求助? 5645254
关于积分的说明 15451020
捐赠科研通 4910481
什么是DOI,文献DOI怎么找? 2642724
邀请新用户注册赠送积分活动 1590412
关于科研通互助平台的介绍 1544770