Low-light image enhancement with knowledge distillation

计算机科学 卷积神经网络 人工智能 人工神经网络 图像(数学) 知识转移 蒸馏 深度学习 机器学习 计算机视觉 知识管理 有机化学 化学
作者
Ziwen Li,Yuehuan Wang,Jinpu Zhang
出处
期刊:Neurocomputing [Elsevier]
卷期号:518: 332-343 被引量:31
标识
DOI:10.1016/j.neucom.2022.10.083
摘要

Low-light image enhancement studies how to improve the quality of images captured under poor lighting conditions, which is of real-world importance. Currently, convolutional neural network (CNN)-based methods with state-of-the-art performance have become the mainstream of research. However, most CNN-based methods improve the performance of the algorithm by increasing the width and depth of the neural network, which requires large computing device resources. In this paper, we propose a knowledge distillation method for low light image enhancement. The proposed method uses a teacher-student framework in which the teacher network tries to transfer the rich knowledge to the student network. The student network learns the knowledge of image enhancement under the supervision of ground truth images and under the guidance of the teacher network simultaneously. Knowledge transfer between the teacher-student network is accomplished by distillation loss based on attention maps. We designed a gradient-guided low-light image enhancement network that can be divided into an enhancement branch and a gradient branch, where the enhancement branch is learned under the guidance of the gradient branch to better preserve structural information. The teacher and student networks use a similar structure, but they have different model sizes. The teacher network has more parameters and more powerful learning capabilities than the student network. With the help of knowledge distillation, our approach can improve the performance of the student network without increasing the computational burden during the testing phase. The qualitative and quantitative experimental results demonstrate the superiority of our method compared to the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xjx完成签到 ,获得积分10
刚刚
酷炫大树发布了新的文献求助10
1秒前
orixero应助凶狠的盼柳采纳,获得10
1秒前
阿翼完成签到 ,获得积分10
1秒前
妮露的修狗完成签到,获得积分10
1秒前
乐园完成签到,获得积分10
1秒前
开朗满天完成签到 ,获得积分10
2秒前
2秒前
2秒前
成就缘分发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
li发布了新的文献求助10
3秒前
胡枝子发布了新的文献求助30
4秒前
季悦完成签到,获得积分10
4秒前
BaiX完成签到,获得积分10
4秒前
4秒前
顾矜应助ttssooe采纳,获得10
4秒前
5秒前
共享精神应助罗mian采纳,获得10
5秒前
亭语完成签到 ,获得积分0
6秒前
重要清涟完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
BaiX发布了新的文献求助10
7秒前
7秒前
路旁小白完成签到,获得积分10
7秒前
枫桥完成签到 ,获得积分10
7秒前
彭于晏应助zhonghbush采纳,获得10
8秒前
秦玉蓉完成签到,获得积分10
8秒前
小文cremen完成签到 ,获得积分10
9秒前
Owen应助千里采纳,获得10
10秒前
o10发布了新的文献求助10
10秒前
MADKAI发布了新的文献求助10
10秒前
紧张的梦岚应助开放雁丝采纳,获得20
10秒前
淇淇怪怪发布了新的文献求助10
11秒前
深情安青应助呼叫554采纳,获得30
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672