Assisting the Human Embryo Viability Assessment by Deep Learning for In Vitro Fertilization

胚泡 体外受精 透明带 分割 人工智能 囊胚腔 生殖技术 男科 内细胞团 计算机科学 生物 胚胎 模式识别(心理学) 胚胎发生 医学 遗传学 卵母细胞
作者
Muhammad Ishaq,Salman Raza,Hunza Rehar,Shan e Zain ul Abadeen,Dildar Hussain,Rizwan Ali Naqvi,Seung Won Lee
出处
期刊:Mathematics [MDPI AG]
卷期号:11 (9): 2023-2023
标识
DOI:10.3390/math11092023
摘要

The increasing global infertility rate is a matter of significant concern. In vitro fertilization (IVF) significantly minimizes infertility by providing an alternative clinical means of becoming pregnant. The success of IVF mainly depends on the assessment and analysis of human blastocyst components such as the blastocoel (BC), zona pellucida (ZP), inner cell mass (ICM), and trophectoderm (TE). Embryologists perform a morphological assessment of the blastocyst components for the selection of potential embryos to be used in the IVF process. Manual assessment of blastocyst components is time-consuming, subjective, and prone to errors. Therefore, artificial intelligence (AI)-based methods are highly desirable for enhancing the success rate and efficiency of IVF. In this study, a novel feature-supplementation-based blastocyst segmentation network (FSBS-Net) has been developed to deliver higher segmentation accuracy for blastocyst components with less computational overhead compared with state-of-the-art methods. FSBS-Net uses an effective feature supplementation mechanism along with ascending channel convolutional blocks to accurately detect the pixels of the blastocyst components with minimal spatial loss. The proposed method was evaluated using an open database for human blastocyst component segmentation, and it outperformed state-of-the-art methods in terms of both segmentation accuracy and computational efficiency. FSBS-Net segmented the BC, ZP, ICM, TE, and background with intersections over union (IoU) values of 89.15, 85.80, 85.55, 80.17, and 95.61%, respectively. In addition, FSBS-Net achieved a mean IoU for all categories of 87.26% with only 2.01 million trainable parameters. The experimental results demonstrate that the proposed method could be very helpful in assisting embryologists in the morphological assessment of human blastocyst components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助原野小年采纳,获得10
刚刚
huge0114发布了新的文献求助30
刚刚
冷艳的友瑶完成签到,获得积分10
2秒前
2秒前
2秒前
潇湘夜雨发布了新的文献求助10
2秒前
烟花应助菜小芽采纳,获得10
3秒前
4秒前
Stitch完成签到,获得积分10
4秒前
5秒前
xioabu发布了新的文献求助10
6秒前
eurus完成签到,获得积分10
6秒前
是美羊羊完成签到,获得积分10
8秒前
HEIKU应助huge0114采纳,获得10
9秒前
丘比特应助酷酷的雁易采纳,获得10
9秒前
9秒前
原野小年发布了新的文献求助10
11秒前
可爱的函函应助二个虎牙采纳,获得10
12秒前
12秒前
传奇3应助xioabu采纳,获得10
12秒前
13秒前
kc135完成签到,获得积分10
14秒前
eurus发布了新的文献求助10
14秒前
huge0114完成签到,获得积分10
15秒前
Kevin Li完成签到,获得积分10
16秒前
van_发布了新的文献求助10
18秒前
18秒前
活泼富发布了新的文献求助10
19秒前
jiopaaaaa发布了新的文献求助10
20秒前
852应助nater4ver采纳,获得10
20秒前
20秒前
谦让的静柏完成签到,获得积分10
22秒前
ding应助candy丫丫采纳,获得30
23秒前
咖啡豆应助科研通管家采纳,获得10
23秒前
李禾发布了新的文献求助10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
23秒前
丘比特应助科研通管家采纳,获得10
23秒前
咖啡豆应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得10
23秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140831
求助须知:如何正确求助?哪些是违规求助? 2791790
关于积分的说明 7800310
捐赠科研通 2448069
什么是DOI,文献DOI怎么找? 1302350
科研通“疑难数据库(出版商)”最低求助积分说明 626516
版权声明 601210