Assisting the Human Embryo Viability Assessment by Deep Learning for In Vitro Fertilization

胚泡 体外受精 透明带 分割 人工智能 囊胚腔 生殖技术 男科 内细胞团 计算机科学 生物 胚胎 模式识别(心理学) 胚胎发生 医学 遗传学 卵母细胞
作者
Muhammad Ishaq,Salman Raza,Hunza Rehar,Shan e Zain ul Abadeen,Dildar Hussain,Rizwan Ali Naqvi,Seung Won Lee
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:11 (9): 2023-2023
标识
DOI:10.3390/math11092023
摘要

The increasing global infertility rate is a matter of significant concern. In vitro fertilization (IVF) significantly minimizes infertility by providing an alternative clinical means of becoming pregnant. The success of IVF mainly depends on the assessment and analysis of human blastocyst components such as the blastocoel (BC), zona pellucida (ZP), inner cell mass (ICM), and trophectoderm (TE). Embryologists perform a morphological assessment of the blastocyst components for the selection of potential embryos to be used in the IVF process. Manual assessment of blastocyst components is time-consuming, subjective, and prone to errors. Therefore, artificial intelligence (AI)-based methods are highly desirable for enhancing the success rate and efficiency of IVF. In this study, a novel feature-supplementation-based blastocyst segmentation network (FSBS-Net) has been developed to deliver higher segmentation accuracy for blastocyst components with less computational overhead compared with state-of-the-art methods. FSBS-Net uses an effective feature supplementation mechanism along with ascending channel convolutional blocks to accurately detect the pixels of the blastocyst components with minimal spatial loss. The proposed method was evaluated using an open database for human blastocyst component segmentation, and it outperformed state-of-the-art methods in terms of both segmentation accuracy and computational efficiency. FSBS-Net segmented the BC, ZP, ICM, TE, and background with intersections over union (IoU) values of 89.15, 85.80, 85.55, 80.17, and 95.61%, respectively. In addition, FSBS-Net achieved a mean IoU for all categories of 87.26% with only 2.01 million trainable parameters. The experimental results demonstrate that the proposed method could be very helpful in assisting embryologists in the morphological assessment of human blastocyst components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夸父完成签到,获得积分10
3秒前
4秒前
4秒前
huanhuan发布了新的文献求助10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
5秒前
平常的狗应助研友_VZGvVn采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
田様应助科研通管家采纳,获得10
5秒前
勤恳完成签到,获得积分10
5秒前
方三问完成签到,获得积分10
6秒前
Tk完成签到,获得积分10
8秒前
9秒前
可爱的函函应助22222采纳,获得10
9秒前
10秒前
10秒前
10秒前
西西发布了新的文献求助10
13秒前
14秒前
充电宝应助范雅寒采纳,获得10
15秒前
16秒前
orixero应助自由的水云采纳,获得10
17秒前
Aphelion完成签到 ,获得积分10
18秒前
18秒前
在水一方应助潞垚采纳,获得10
18秒前
雪山飞龙发布了新的文献求助10
19秒前
Jasper应助钟D摆采纳,获得10
20秒前
leslie完成签到 ,获得积分10
21秒前
木木发布了新的文献求助10
21秒前
hs完成签到,获得积分10
22秒前
优雅的枫叶完成签到,获得积分20
23秒前
情怀应助Cici采纳,获得10
27秒前
笑笑完成签到 ,获得积分10
27秒前
千俞完成签到 ,获得积分10
27秒前
任性梦旋发布了新的文献求助10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969782
求助须知:如何正确求助?哪些是违规求助? 3514601
关于积分的说明 11174816
捐赠科研通 3249899
什么是DOI,文献DOI怎么找? 1795080
邀请新用户注册赠送积分活动 875599
科研通“疑难数据库(出版商)”最低求助积分说明 804886