Assisting the Human Embryo Viability Assessment by Deep Learning for In Vitro Fertilization

胚泡 体外受精 透明带 分割 人工智能 囊胚腔 生殖技术 男科 内细胞团 计算机科学 生物 胚胎 模式识别(心理学) 胚胎发生 医学 遗传学 卵母细胞
作者
Muhammad Ishaq,Salman Raza,Hunza Rehar,Shan e Zain ul Abadeen,Dildar Hussain,Rizwan Ali Naqvi,Seung Won Lee
出处
期刊:Mathematics [MDPI AG]
卷期号:11 (9): 2023-2023
标识
DOI:10.3390/math11092023
摘要

The increasing global infertility rate is a matter of significant concern. In vitro fertilization (IVF) significantly minimizes infertility by providing an alternative clinical means of becoming pregnant. The success of IVF mainly depends on the assessment and analysis of human blastocyst components such as the blastocoel (BC), zona pellucida (ZP), inner cell mass (ICM), and trophectoderm (TE). Embryologists perform a morphological assessment of the blastocyst components for the selection of potential embryos to be used in the IVF process. Manual assessment of blastocyst components is time-consuming, subjective, and prone to errors. Therefore, artificial intelligence (AI)-based methods are highly desirable for enhancing the success rate and efficiency of IVF. In this study, a novel feature-supplementation-based blastocyst segmentation network (FSBS-Net) has been developed to deliver higher segmentation accuracy for blastocyst components with less computational overhead compared with state-of-the-art methods. FSBS-Net uses an effective feature supplementation mechanism along with ascending channel convolutional blocks to accurately detect the pixels of the blastocyst components with minimal spatial loss. The proposed method was evaluated using an open database for human blastocyst component segmentation, and it outperformed state-of-the-art methods in terms of both segmentation accuracy and computational efficiency. FSBS-Net segmented the BC, ZP, ICM, TE, and background with intersections over union (IoU) values of 89.15, 85.80, 85.55, 80.17, and 95.61%, respectively. In addition, FSBS-Net achieved a mean IoU for all categories of 87.26% with only 2.01 million trainable parameters. The experimental results demonstrate that the proposed method could be very helpful in assisting embryologists in the morphological assessment of human blastocyst components.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木棉发布了新的文献求助10
刚刚
英吉利25发布了新的文献求助10
刚刚
科研王发布了新的文献求助10
1秒前
什么什么哇偶完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
kasami发布了新的文献求助10
3秒前
3秒前
深情安青应助GLM采纳,获得10
4秒前
4秒前
华仔应助魔幻安筠采纳,获得10
4秒前
bliss完成签到,获得积分10
4秒前
左丘易梦完成签到,获得积分10
5秒前
5秒前
tang应助虚心的岩采纳,获得10
5秒前
苔原猫咪甜甜圈完成签到,获得积分10
5秒前
尹善冰完成签到,获得积分10
5秒前
aaa完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
大圣来也发布了新的文献求助10
6秒前
在水一方应助11采纳,获得10
7秒前
7秒前
Wind应助愉快小猪采纳,获得10
8秒前
10086发布了新的文献求助10
8秒前
上官若男应助无心的月亮采纳,获得10
9秒前
aaa发布了新的文献求助10
9秒前
9秒前
9秒前
Alan发布了新的文献求助10
9秒前
得意黑发布了新的文献求助10
9秒前
Honghao完成签到,获得积分10
10秒前
stiger应助111采纳,获得50
10秒前
ppat5012发布了新的文献求助10
10秒前
zhangsf88完成签到,获得积分10
10秒前
ioii完成签到,获得积分10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444