Assisting the Human Embryo Viability Assessment by Deep Learning for In Vitro Fertilization

胚泡 体外受精 透明带 分割 人工智能 囊胚腔 生殖技术 男科 内细胞团 计算机科学 生物 胚胎 模式识别(心理学) 胚胎发生 医学 遗传学 卵母细胞
作者
Muhammad Ishaq,Salman Raza,Hunza Rehar,Shan e Zain ul Abadeen,Dildar Hussain,Rizwan Ali Naqvi,Seung Won Lee
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:11 (9): 2023-2023
标识
DOI:10.3390/math11092023
摘要

The increasing global infertility rate is a matter of significant concern. In vitro fertilization (IVF) significantly minimizes infertility by providing an alternative clinical means of becoming pregnant. The success of IVF mainly depends on the assessment and analysis of human blastocyst components such as the blastocoel (BC), zona pellucida (ZP), inner cell mass (ICM), and trophectoderm (TE). Embryologists perform a morphological assessment of the blastocyst components for the selection of potential embryos to be used in the IVF process. Manual assessment of blastocyst components is time-consuming, subjective, and prone to errors. Therefore, artificial intelligence (AI)-based methods are highly desirable for enhancing the success rate and efficiency of IVF. In this study, a novel feature-supplementation-based blastocyst segmentation network (FSBS-Net) has been developed to deliver higher segmentation accuracy for blastocyst components with less computational overhead compared with state-of-the-art methods. FSBS-Net uses an effective feature supplementation mechanism along with ascending channel convolutional blocks to accurately detect the pixels of the blastocyst components with minimal spatial loss. The proposed method was evaluated using an open database for human blastocyst component segmentation, and it outperformed state-of-the-art methods in terms of both segmentation accuracy and computational efficiency. FSBS-Net segmented the BC, ZP, ICM, TE, and background with intersections over union (IoU) values of 89.15, 85.80, 85.55, 80.17, and 95.61%, respectively. In addition, FSBS-Net achieved a mean IoU for all categories of 87.26% with only 2.01 million trainable parameters. The experimental results demonstrate that the proposed method could be very helpful in assisting embryologists in the morphological assessment of human blastocyst components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mufcyang完成签到,获得积分10
1秒前
了晨完成签到 ,获得积分10
2秒前
yi完成签到 ,获得积分10
5秒前
wxnice完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
星辰大海应助大橙子采纳,获得10
17秒前
17秒前
七QI完成签到 ,获得积分10
18秒前
21秒前
褚香旋完成签到,获得积分10
21秒前
一只狗东西完成签到 ,获得积分10
23秒前
宇老师发布了新的文献求助10
24秒前
25秒前
qiqi发布了新的文献求助30
27秒前
大橙子发布了新的文献求助10
30秒前
wzhang完成签到,获得积分10
31秒前
ken131完成签到 ,获得积分10
34秒前
myl完成签到,获得积分10
35秒前
728完成签到,获得积分10
41秒前
xiaofeng5838完成签到,获得积分10
41秒前
ronnie完成签到,获得积分10
41秒前
44秒前
寒冷芷蕊完成签到,获得积分20
44秒前
44秒前
Jane完成签到,获得积分10
44秒前
一氧化二氢完成签到,获得积分10
50秒前
凡事发生必有利于我完成签到,获得积分10
51秒前
yihaiqin完成签到 ,获得积分10
55秒前
轩辕剑身完成签到,获得积分0
55秒前
coolkid完成签到 ,获得积分0
56秒前
你怎么那么美完成签到,获得积分10
56秒前
游艺完成签到 ,获得积分10
59秒前
冬月完成签到 ,获得积分10
59秒前
薛乎虚完成签到 ,获得积分10
1分钟前
1分钟前
大胖完成签到,获得积分10
1分钟前
野火197完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
April完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022