Assisting the Human Embryo Viability Assessment by Deep Learning for In Vitro Fertilization

胚泡 体外受精 透明带 分割 人工智能 囊胚腔 生殖技术 男科 内细胞团 计算机科学 生物 胚胎 模式识别(心理学) 胚胎发生 医学 遗传学 卵母细胞
作者
Muhammad Ishaq,Salman Raza,Hunza Rehar,Shan e Zain ul Abadeen,Dildar Hussain,Rizwan Ali Naqvi,Seung Won Lee
出处
期刊:Mathematics [MDPI AG]
卷期号:11 (9): 2023-2023
标识
DOI:10.3390/math11092023
摘要

The increasing global infertility rate is a matter of significant concern. In vitro fertilization (IVF) significantly minimizes infertility by providing an alternative clinical means of becoming pregnant. The success of IVF mainly depends on the assessment and analysis of human blastocyst components such as the blastocoel (BC), zona pellucida (ZP), inner cell mass (ICM), and trophectoderm (TE). Embryologists perform a morphological assessment of the blastocyst components for the selection of potential embryos to be used in the IVF process. Manual assessment of blastocyst components is time-consuming, subjective, and prone to errors. Therefore, artificial intelligence (AI)-based methods are highly desirable for enhancing the success rate and efficiency of IVF. In this study, a novel feature-supplementation-based blastocyst segmentation network (FSBS-Net) has been developed to deliver higher segmentation accuracy for blastocyst components with less computational overhead compared with state-of-the-art methods. FSBS-Net uses an effective feature supplementation mechanism along with ascending channel convolutional blocks to accurately detect the pixels of the blastocyst components with minimal spatial loss. The proposed method was evaluated using an open database for human blastocyst component segmentation, and it outperformed state-of-the-art methods in terms of both segmentation accuracy and computational efficiency. FSBS-Net segmented the BC, ZP, ICM, TE, and background with intersections over union (IoU) values of 89.15, 85.80, 85.55, 80.17, and 95.61%, respectively. In addition, FSBS-Net achieved a mean IoU for all categories of 87.26% with only 2.01 million trainable parameters. The experimental results demonstrate that the proposed method could be very helpful in assisting embryologists in the morphological assessment of human blastocyst components.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忘响完成签到 ,获得积分10
1秒前
up完成签到,获得积分10
2秒前
2秒前
2秒前
大炮不慌张完成签到,获得积分10
3秒前
aaaaa发布了新的文献求助10
4秒前
在水一方应助油柑美式采纳,获得10
4秒前
4秒前
任伟超发布了新的文献求助10
4秒前
弓夜声完成签到,获得积分20
4秒前
dz完成签到,获得积分20
6秒前
6秒前
大力的含卉完成签到,获得积分10
6秒前
tulips发布了新的文献求助10
6秒前
我爱学习完成签到,获得积分10
7秒前
xie完成签到,获得积分10
7秒前
烟花应助樱桃汽水采纳,获得10
7秒前
可爱的函函应助黄宇凡采纳,获得10
7秒前
咸鱼完成签到 ,获得积分10
7秒前
风中小懒虫完成签到,获得积分10
8秒前
modoun完成签到 ,获得积分10
8秒前
cocolu发布了新的文献求助10
8秒前
9秒前
9秒前
深情安青应助任伟超采纳,获得10
10秒前
laity完成签到,获得积分10
11秒前
Akim应助弓夜声采纳,获得10
11秒前
霍笑寒完成签到,获得积分10
11秒前
等待的枫叶完成签到,获得积分20
11秒前
12秒前
加一完成签到 ,获得积分10
13秒前
mmf发布了新的文献求助10
14秒前
14秒前
LB应助青蛙的第二滴口水采纳,获得30
14秒前
柏林寒冬应助ggg采纳,获得10
15秒前
Orange应助tulips采纳,获得10
15秒前
15秒前
louis完成签到,获得积分10
16秒前
清晾油完成签到,获得积分10
16秒前
科目三应助勤学勤积累采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296947
求助须知:如何正确求助?哪些是违规求助? 4445951
关于积分的说明 13837832
捐赠科研通 4331031
什么是DOI,文献DOI怎么找? 2377382
邀请新用户注册赠送积分活动 1372652
关于科研通互助平台的介绍 1338217