亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Frequent Errors in Modeling by Machine Learning: A Prototype Case of Predicting the Timely Evolution of COVID-19 Pandemic

计算机科学 差异(会计) 机器学习 人工智能 排名(信息检索) 离群值 预处理器 没有人 数据挖掘 会计 业务 操作系统
作者
Károly Héberger
出处
期刊:Algorithms [MDPI AG]
卷期号:17 (1): 43-43 被引量:1
标识
DOI:10.3390/a17010043
摘要

Background: The development and application of machine learning (ML) methods have become so fast that almost nobody can follow their developments in every detail. It is no wonder that numerous errors and inconsistencies in their usage have also spread with a similar speed independently from the tasks: regression and classification. This work summarizes frequent errors committed by certain authors with the aim of helping scientists to avoid them. Methods: The principle of parsimony governs the train of thought. Fair method comparison can be completed with multicriteria decision-making techniques, preferably by the sum of ranking differences (SRD). Its coupling with analysis of variance (ANOVA) decomposes the effects of several factors. Earlier findings are summarized in a review-like manner: the abuse of the correlation coefficient and proper practices for model discrimination are also outlined. Results: Using an illustrative example, the correct practice and the methodology are summarized as guidelines for model discrimination, and for minimizing the prediction errors. The following factors are all prerequisites for successful modeling: proper data preprocessing, statistical tests, suitable performance parameters, appropriate degrees of freedom, fair comparison of models, and outlier detection, just to name a few. A checklist is provided in a tutorial manner on how to present ML modeling properly. The advocated practices are reviewed shortly in the discussion. Conclusions: Many of the errors can easily be filtered out with careful reviewing. Every authors’ responsibility is to adhere to the rules of modeling and validation. A representative sampling of recent literature outlines correct practices and emphasizes that no error-free publication exists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
charliechen完成签到 ,获得积分10
7秒前
心随以动完成签到 ,获得积分10
54秒前
充电宝应助kyt采纳,获得10
59秒前
难过的钥匙完成签到 ,获得积分10
59秒前
修辛完成签到 ,获得积分10
1分钟前
眼睛大的尔竹完成签到 ,获得积分10
1分钟前
1分钟前
kyt发布了新的文献求助10
1分钟前
科研通AI5应助张清采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得30
1分钟前
1分钟前
张清发布了新的文献求助10
1分钟前
高海龙完成签到,获得积分10
1分钟前
1分钟前
思源应助不要命的皮卡丘采纳,获得30
2分钟前
2分钟前
香蕉觅云应助成社长采纳,获得10
2分钟前
点心完成签到,获得积分10
2分钟前
2分钟前
成社长发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
joe完成签到 ,获得积分0
3分钟前
852应助pollen采纳,获得10
4分钟前
犹豫的代芙完成签到,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
饱满书雁发布了新的文献求助10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
不要命的皮卡丘完成签到,获得积分10
5分钟前
科研通AI5应助张清采纳,获得10
5分钟前
尤尢应助饱满书雁采纳,获得10
5分钟前
5分钟前
张清发布了新的文献求助10
6分钟前
桥桥乔乔完成签到 ,获得积分10
6分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3562017
求助须知:如何正确求助?哪些是违规求助? 3135557
关于积分的说明 9412566
捐赠科研通 2835932
什么是DOI,文献DOI怎么找? 1558802
邀请新用户注册赠送积分活动 728467
科研通“疑难数据库(出版商)”最低求助积分说明 716865