Erasing-inpainting-based data augmentation using denoising diffusion probabilistic models with limited samples for generalized surface defect inspection

修补 人工智能 计算机科学 噪音(视频) 计算机视觉 概率逻辑 图像(数学) 降噪 模式识别(心理学)
作者
Huanjie Tao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:208: 111082-111082 被引量:12
标识
DOI:10.1016/j.ymssp.2023.111082
摘要

Surface defect inspection aims to identify defective regions in product surface images to ensure product quality. Existing deep learning methods have developed rapidly on surface defect inspection. However, their excellent performances rely on a large number of training samples, which are hard to acquire in practical industrial scenarios due to the continuous improvements of the production line. To solve this issue, we propose an erasing-inpainting-based data augmentation method using a denoising diffusion probabilistic model (DDPM) with limited samples for generalized surface defect inspection. Our method is based on the idea that a defect image is difficult to recover to its previous state after undergoing a large-scale erasure operation, thus diverse defect images can be generated using different settings in the inpainting model. Specifically, we first train a DDPM model using limited defective images. Then, we erase large-scale parts of an input image to obtain a degraded image and restore the erased areas using the trained DDPM. Finally, the repaired images are further used for updating the DDPM. The main advantage of our method is to generate diverse images by only being trained using limited training samples. On the one hand, our method fundamentally avoids the dimension inconsistency between the sampled noise and the generated image by sampling from a two-dimensional noise map with the same resolution as the output image based on DDPM. On the other hand, the proposed erasing-inpainting operation promotes the recombination of the real features from the training set and the learned features from the trained DDPM to fully use the limited defective samples and the easily obtainable defect-free samples. Extensive experiments demonstrated the effectiveness and advantages of our model on data augmentation for generalized surface defect inspection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助xmh采纳,获得10
刚刚
1秒前
笑点低饼干完成签到,获得积分20
1秒前
2秒前
Gaoge完成签到,获得积分10
2秒前
zlk112zr完成签到,获得积分10
2秒前
李健应助石蕊采纳,获得10
3秒前
思源应助一心扑在搞学术采纳,获得10
3秒前
3秒前
3秒前
慧仔53发布了新的文献求助10
3秒前
涣九发布了新的文献求助10
4秒前
zhy发布了新的文献求助10
4秒前
echo发布了新的文献求助30
5秒前
小s完成签到,获得积分10
5秒前
香蕉觅云应助zkz采纳,获得10
5秒前
5秒前
科研通AI2S应助华hgger采纳,获得10
5秒前
丁仪完成签到,获得积分10
5秒前
jojo完成签到,获得积分20
6秒前
6秒前
梅倪完成签到,获得积分10
7秒前
灵鹿发布了新的文献求助10
7秒前
渠安发布了新的文献求助200
7秒前
Amazing完成签到 ,获得积分10
8秒前
hzauhzau发布了新的文献求助10
8秒前
zivenjasek发布了新的文献求助10
9秒前
小s发布了新的文献求助10
9秒前
迷途发布了新的文献求助10
10秒前
11秒前
111完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
12秒前
14秒前
swy完成签到,获得积分10
15秒前
小酸奶发布了新的文献求助10
16秒前
李子完成签到,获得积分10
16秒前
DEF完成签到,获得积分10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842227
求助须知:如何正确求助?哪些是违规求助? 3384336
关于积分的说明 10534304
捐赠科研通 3104803
什么是DOI,文献DOI怎么找? 1709801
邀请新用户注册赠送积分活动 823377
科研通“疑难数据库(出版商)”最低求助积分说明 774048