Erasing-inpainting-based data augmentation using denoising diffusion probabilistic models with limited samples for generalized surface defect inspection

修补 人工智能 计算机科学 噪音(视频) 计算机视觉 概率逻辑 图像(数学) 降噪 采样(信号处理) 模式识别(心理学) 滤波器(信号处理)
作者
Huanjie Tao
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:208: 111082-111082 被引量:4
标识
DOI:10.1016/j.ymssp.2023.111082
摘要

Surface defect inspection aims to identify defective regions in product surface images to ensure product quality. Existing deep learning methods have developed rapidly on surface defect inspection. However, their excellent performances rely on a large number of training samples, which are hard to acquire in practical industrial scenarios due to the continuous improvements of the production line. To solve this issue, we propose an erasing-inpainting-based data augmentation method using a denoising diffusion probabilistic model (DDPM) with limited samples for generalized surface defect inspection. Our method is based on the idea that a defect image is difficult to recover to its previous state after undergoing a large-scale erasure operation, thus diverse defect images can be generated using different settings in the inpainting model. Specifically, we first train a DDPM model using limited defective images. Then, we erase large-scale parts of an input image to obtain a degraded image and restore the erased areas using the trained DDPM. Finally, the repaired images are further used for updating the DDPM. The main advantage of our method is to generate diverse images by only being trained using limited training samples. On the one hand, our method fundamentally avoids the dimension inconsistency between the sampled noise and the generated image by sampling from a two-dimensional noise map with the same resolution as the output image based on DDPM. On the other hand, the proposed erasing-inpainting operation promotes the recombination of the real features from the training set and the learned features from the trained DDPM to fully use the limited defective samples and the easily obtainable defect-free samples. Extensive experiments demonstrated the effectiveness and advantages of our model on data augmentation for generalized surface defect inspection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寻找土豆的灯完成签到 ,获得积分10
1秒前
嗷嗷嗷啊完成签到,获得积分10
1秒前
ppf发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
BareBear应助热心的珍采纳,获得10
3秒前
melon发布了新的文献求助10
3秒前
3秒前
派大猪咪完成签到,获得积分10
5秒前
Bing Yan完成签到,获得积分10
5秒前
婷小妹完成签到,获得积分10
5秒前
6秒前
酷波er应助wuxi采纳,获得10
6秒前
bbk发布了新的文献求助10
6秒前
7秒前
大马猴发布了新的文献求助10
7秒前
8秒前
羊羊完成签到,获得积分10
9秒前
大力翠丝完成签到,获得积分10
9秒前
10秒前
Lululu18发布了新的文献求助30
11秒前
bbk完成签到,获得积分10
12秒前
婷小妹发布了新的文献求助10
13秒前
nee完成签到,获得积分10
13秒前
13秒前
爱吃黄豆完成签到,获得积分10
13秒前
13秒前
fortune应助袁小圆采纳,获得10
13秒前
15秒前
科研通AI2S应助大马猴采纳,获得10
15秒前
15秒前
过分美丽完成签到 ,获得积分10
16秒前
Vision820发布了新的文献求助10
17秒前
CipherSage应助面包小狗采纳,获得10
17秒前
懦弱的乐蕊完成签到 ,获得积分10
17秒前
17秒前
ccccc发布了新的文献求助10
18秒前
可我叫100个苹果完成签到,获得积分10
18秒前
完美世界应助tingfeng采纳,获得10
19秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328119
求助须知:如何正确求助?哪些是违规求助? 2958244
关于积分的说明 8589820
捐赠科研通 2636574
什么是DOI,文献DOI怎么找? 1443038
科研通“疑难数据库(出版商)”最低求助积分说明 668500
邀请新用户注册赠送积分活动 655733