已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Progress, achievements, and challenges in multimodal sentiment analysis using deep learning: A survey

情绪分析 计算机科学 深度学习 人工智能 数据科学 机器学习
作者
Ananya Pandey,Dinesh Kumar Vishwakarma
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:152: 111206-111206 被引量:12
标识
DOI:10.1016/j.asoc.2023.111206
摘要

Sentiment analysis is a computational technique that analyses the subjective information conveyed within a given expression. This encompasses appraisals, opinions, attitudes or emotions towards a particular subject, individual, or entity. Conventional sentiment analysis solely considers the text modality and derives sentiment by identifying the semantic relationship between words within a sentence. Despite this, certain expressions, such as exaggeration, sarcasm and humor, pose a challenge for automated detection when conveyed only through text. Multimodal sentiment analysis incorporates various forms of data, such as visual and acoustic cues, in addition to text. By utilizing fusion analysis, this approach can more precisely determine the implied sentiment polarity, which includes positive, neutral, and negative sentiments. Thus, the recent advancements in deep learning have boosted the domain of multimodal sentiment analysis to new heights. The research community has also shown significant interest in this topic due to its potential for both practical application and educational research. In light of this fact, this paper aims to present a thorough analysis of recent ground-breaking research studies conducted in multimodal sentiment analysis, which employs deep learning models across various modalities such as text, audio, image, and video. Furthermore, the article dives into a discussion of the multiple categories of multimodal data, diverse domains in which multimodal sentiment analysis can be applied, a range of operations that are integral to multimodal sentiment analysis, deep learning architectures, a variety of fusion methods, challenges associated with multimodal sentiment analysis, and the benchmark datasets in addition to the state-of-the-art approaches. The ultimate goal of this survey is to indicate the success of deep learning architectures in tackling the complexities associated with multimodal sentiment analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
geold发布了新的文献求助10
1秒前
超级微笑完成签到 ,获得积分10
2秒前
SPLjoker完成签到 ,获得积分10
3秒前
5秒前
7秒前
leo10743发布了新的文献求助20
10秒前
悟川完成签到 ,获得积分10
13秒前
geold完成签到,获得积分10
15秒前
搞怪冬天发布了新的文献求助10
16秒前
酷波er应助奥德修斯凡采纳,获得10
17秒前
18秒前
sqlin完成签到 ,获得积分10
18秒前
jiangjiang完成签到 ,获得积分10
18秒前
嘿嘿完成签到 ,获得积分10
18秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
我是老大应助科研通管家采纳,获得10
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
bkagyin应助科研通管家采纳,获得30
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
阔达的非笑完成签到 ,获得积分10
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
22秒前
李鱼丸完成签到,获得积分10
23秒前
24秒前
25秒前
半只熊完成签到 ,获得积分10
25秒前
26秒前
bkagyin应助夜阑卧听采纳,获得10
27秒前
Rn完成签到 ,获得积分10
28秒前
29秒前
乐枳完成签到 ,获得积分10
29秒前
魔芋发布了新的文献求助10
29秒前
一只熊完成签到 ,获得积分10
31秒前
肉肉完成签到 ,获得积分10
31秒前
嗯哼完成签到 ,获得积分10
32秒前
猜不猜不完成签到 ,获得积分10
38秒前
xdy完成签到 ,获得积分10
38秒前
牛蛙丶丶完成签到,获得积分10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953339
求助须知:如何正确求助?哪些是违规求助? 3498826
关于积分的说明 11093114
捐赠科研通 3229324
什么是DOI,文献DOI怎么找? 1785293
邀请新用户注册赠送积分活动 869379
科研通“疑难数据库(出版商)”最低求助积分说明 801439