Progress, achievements, and challenges in multimodal sentiment analysis using deep learning: A survey

情绪分析 计算机科学 深度学习 人工智能 数据科学 机器学习
作者
Ananya Pandey,Dinesh Kumar Vishwakarma
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:152: 111206-111206 被引量:9
标识
DOI:10.1016/j.asoc.2023.111206
摘要

Sentiment analysis is a computational technique that analyses the subjective information conveyed within a given expression. This encompasses appraisals, opinions, attitudes or emotions towards a particular subject, individual, or entity. Conventional sentiment analysis solely considers the text modality and derives sentiment by identifying the semantic relationship between words within a sentence. Despite this, certain expressions, such as exaggeration, sarcasm and humor, pose a challenge for automated detection when conveyed only through text. Multimodal sentiment analysis incorporates various forms of data, such as visual and acoustic cues, in addition to text. By utilizing fusion analysis, this approach can more precisely determine the implied sentiment polarity, which includes positive, neutral, and negative sentiments. Thus, the recent advancements in deep learning have boosted the domain of multimodal sentiment analysis to new heights. The research community has also shown significant interest in this topic due to its potential for both practical application and educational research. In light of this fact, this paper aims to present a thorough analysis of recent ground-breaking research studies conducted in multimodal sentiment analysis, which employs deep learning models across various modalities such as text, audio, image, and video. Furthermore, the article dives into a discussion of the multiple categories of multimodal data, diverse domains in which multimodal sentiment analysis can be applied, a range of operations that are integral to multimodal sentiment analysis, deep learning architectures, a variety of fusion methods, challenges associated with multimodal sentiment analysis, and the benchmark datasets in addition to the state-of-the-art approaches. The ultimate goal of this survey is to indicate the success of deep learning architectures in tackling the complexities associated with multimodal sentiment analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助Li chun sheng采纳,获得10
刚刚
刚刚
Disguise发布了新的文献求助10
1秒前
HCY完成签到,获得积分10
1秒前
阿郎完成签到 ,获得积分10
1秒前
白明完成签到,获得积分10
1秒前
甄人达完成签到,获得积分10
2秒前
TRTHHRTZ完成签到,获得积分10
2秒前
LJWU完成签到,获得积分10
2秒前
3秒前
lalala完成签到,获得积分10
3秒前
八九发布了新的文献求助20
3秒前
4秒前
缓慢冥幽完成签到 ,获得积分10
4秒前
志豪发布了新的文献求助10
5秒前
joy完成签到,获得积分10
6秒前
彪壮的斩完成签到,获得积分20
6秒前
Ethan完成签到 ,获得积分10
7秒前
rayce发布了新的文献求助10
7秒前
7秒前
支妙驳回了HeyHsc应助
8秒前
zhangjh发布了新的文献求助10
8秒前
Spectator完成签到,获得积分10
9秒前
lnan完成签到,获得积分10
9秒前
9秒前
9秒前
Kolanet完成签到,获得积分10
10秒前
jzh601完成签到,获得积分10
10秒前
10秒前
小二郎应助呜啦啦采纳,获得10
11秒前
小平应助玄黄大世界采纳,获得10
11秒前
ygs完成签到,获得积分10
11秒前
苹果丝完成签到 ,获得积分10
11秒前
爆爆虎完成签到 ,获得积分10
12秒前
13秒前
美嘉美完成签到,获得积分10
13秒前
科研通AI2S应助nnnn采纳,获得10
13秒前
luyjabc完成签到,获得积分10
13秒前
天天困完成签到 ,获得积分10
14秒前
OK发布了新的文献求助10
14秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180222
求助须知:如何正确求助?哪些是违规求助? 2830617
关于积分的说明 7979310
捐赠科研通 2492194
什么是DOI,文献DOI怎么找? 1329251
科研通“疑难数据库(出版商)”最低求助积分说明 635720
版权声明 602954