A novel visible and near-infrared hyperspectral imaging platform for automated breast-cancer detection

高光谱成像 聚类分析 乳腺癌 人工智能 模式识别(心理学) 计算机科学 模糊逻辑 模糊聚类 癌症 计算机视觉 医学 内科学
作者
Ahmed Youssef,Belaid Moa,Yasser H. El-Sharkawy
出处
期刊:Photodiagnosis and Photodynamic Therapy [Elsevier]
卷期号:46: 104048-104048
标识
DOI:10.1016/j.pdpdt.2024.104048
摘要

Background: Breast cancer is a leading cause of cancer-related deaths among women worldwide. Early and accurate detection is crucial for improving patient outcomes. Our study utilizes Visible and Near-Infrared Hyperspectral Imaging (VIS-NIR HSI), a promising non-invasive technique, to detect cancerous regions in ex-vivo breast specimens based on their hyperspectral response. Methods: In this paper, we present a novel HSI platform integrated with fuzzy c-means clustering for automated breast cancer detection. We acquire hyperspectral data from breast tissue samples, and preprocess it to reduce noise and enhance hyperspectral features. Fuzzy c-means clustering is then applied to segment cancerous regions based on their spectral characteristics. Results: Our approach demonstrates promising results. We evaluated the quality of the clustering using metrics like Silhouette Index (SI), Davies-Bouldin Index (DBI), and Calinski-Harabasz Index (CHI). The clustering metrics results revealed an optimal number of 6 clusters for breast tissue classification, and the SI values ranged from 0.68 to 0.72, indicating well-separated clusters. Moreover, the CHI values showed that the clusters were well-defined, and the DBI values demonstrated low cluster dispersion. Additionally, the sensitivity, specificity, and accuracy of our system were evaluated on a dataset of breast tissue samples. We achieved an average sensitivity of 96.83%, specificity of 93.39%, and accuracy of 95.12%. These results indicate the effectiveness of our HSI-based approach in distinguishing cancerous and non-cancerous regions. Conclusions: The paper introduces a robust hyperspectral imaging platform coupled with fuzzy c-means clustering for automated breast cancer detection. The clustering metrics results support the reliability of our approach in effectively segmenting breast tissue samples. In addition, the system shows high sensitivity and specificity, making it a valuable tool for early-stage breast cancer diagnosis. This innovative approach holds great potential for improving breast cancer screening and, thereby, enhancing our understanding of the disease and its detection patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LBY发布了新的文献求助20
刚刚
5555完成签到,获得积分20
1秒前
WWOS发布了新的文献求助10
2秒前
2秒前
陈哈哈发布了新的文献求助10
3秒前
炒面完成签到,获得积分10
3秒前
wiwi完成签到,获得积分10
3秒前
花开富贵发布了新的文献求助10
3秒前
白白发布了新的文献求助10
4秒前
5秒前
1952完成签到,获得积分10
6秒前
Liu发布了新的文献求助10
6秒前
ziyu发布了新的文献求助10
7秒前
卓隶完成签到,获得积分10
7秒前
李健应助悲惨雪糕W采纳,获得10
7秒前
dexrer完成签到,获得积分10
7秒前
8秒前
8秒前
罪恶完成签到,获得积分20
8秒前
欢呼的凡梦完成签到,获得积分10
8秒前
毛豆应助wiiiiiiii采纳,获得10
8秒前
uu发布了新的文献求助10
8秒前
LeeJYn完成签到,获得积分10
8秒前
小于发布了新的文献求助10
8秒前
8秒前
8秒前
10秒前
10秒前
11秒前
艺术大师完成签到,获得积分10
11秒前
耶耶发布了新的文献求助10
12秒前
jjjwln发布了新的文献求助10
12秒前
江江爱科研完成签到,获得积分10
12秒前
子漠发布了新的文献求助10
13秒前
Jasper应助sss采纳,获得10
14秒前
baibai完成签到,获得积分10
14秒前
Cissy发布了新的文献求助10
15秒前
15秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305226
求助须知:如何正确求助?哪些是违规求助? 2939075
关于积分的说明 8491339
捐赠科研通 2613524
什么是DOI,文献DOI怎么找? 1427464
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647708