A novel visible and near-infrared hyperspectral imaging platform for automated breast-cancer detection

高光谱成像 聚类分析 乳腺癌 人工智能 模式识别(心理学) 计算机科学 模糊逻辑 模糊聚类 癌症 计算机视觉 医学 内科学
作者
Ahmed Youssef,Belaid Moa,Yasser H. El-Sharkawy
出处
期刊:Photodiagnosis and Photodynamic Therapy [Elsevier BV]
卷期号:46: 104048-104048
标识
DOI:10.1016/j.pdpdt.2024.104048
摘要

Background: Breast cancer is a leading cause of cancer-related deaths among women worldwide. Early and accurate detection is crucial for improving patient outcomes. Our study utilizes Visible and Near-Infrared Hyperspectral Imaging (VIS-NIR HSI), a promising non-invasive technique, to detect cancerous regions in ex-vivo breast specimens based on their hyperspectral response. Methods: In this paper, we present a novel HSI platform integrated with fuzzy c-means clustering for automated breast cancer detection. We acquire hyperspectral data from breast tissue samples, and preprocess it to reduce noise and enhance hyperspectral features. Fuzzy c-means clustering is then applied to segment cancerous regions based on their spectral characteristics. Results: Our approach demonstrates promising results. We evaluated the quality of the clustering using metrics like Silhouette Index (SI), Davies-Bouldin Index (DBI), and Calinski-Harabasz Index (CHI). The clustering metrics results revealed an optimal number of 6 clusters for breast tissue classification, and the SI values ranged from 0.68 to 0.72, indicating well-separated clusters. Moreover, the CHI values showed that the clusters were well-defined, and the DBI values demonstrated low cluster dispersion. Additionally, the sensitivity, specificity, and accuracy of our system were evaluated on a dataset of breast tissue samples. We achieved an average sensitivity of 96.83%, specificity of 93.39%, and accuracy of 95.12%. These results indicate the effectiveness of our HSI-based approach in distinguishing cancerous and non-cancerous regions. Conclusions: The paper introduces a robust hyperspectral imaging platform coupled with fuzzy c-means clustering for automated breast cancer detection. The clustering metrics results support the reliability of our approach in effectively segmenting breast tissue samples. In addition, the system shows high sensitivity and specificity, making it a valuable tool for early-stage breast cancer diagnosis. This innovative approach holds great potential for improving breast cancer screening and, thereby, enhancing our understanding of the disease and its detection patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄花发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
叮当完成签到,获得积分10
3秒前
恢复出厂设置完成签到 ,获得积分10
3秒前
3秒前
执着手套完成签到,获得积分10
3秒前
kkk发布了新的文献求助10
4秒前
lixin完成签到,获得积分10
4秒前
malubest发布了新的文献求助10
6秒前
杭啊发布了新的文献求助10
6秒前
xiaomili发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
JHL完成签到,获得积分10
7秒前
qq16发布了新的文献求助10
7秒前
Dotgene完成签到,获得积分10
7秒前
小芙爱雪碧完成签到 ,获得积分10
7秒前
7秒前
孙福禄应助quan采纳,获得10
8秒前
8秒前
Mzhao完成签到,获得积分10
9秒前
9秒前
9秒前
疯狂的虔完成签到,获得积分10
9秒前
11秒前
CipherSage应助右右采纳,获得10
11秒前
玉衡发布了新的文献求助10
11秒前
yao chen完成签到,获得积分10
11秒前
朵拉完成签到,获得积分10
11秒前
由清涟完成签到,获得积分10
12秒前
Drhan完成签到,获得积分10
12秒前
FashionBoy应助断数循环采纳,获得10
12秒前
姣妹崽完成签到,获得积分10
12秒前
马一凡完成签到,获得积分0
12秒前
上官若男应助lan199623采纳,获得10
13秒前
俗人完成签到,获得积分10
13秒前
cangye发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600