Semi-supervised learning approach for construction object detection by integrating super-resolution and mean teacher network

对象(语法) 分辨率(逻辑) 人工智能 计算机科学 学习对象 监督学习 机器学习 数学教育 人工神经网络 心理学
作者
Wenjie Zhang,Hua‐Ping Wan,Pengxiang Hu,Huibin Ge,Yaozhi Luo,Michael D. Todd
出处
期刊:Journal of infrastructure intelligence and resilience 卷期号:3 (4): 100095-100095
标识
DOI:10.1016/j.iintel.2024.100095
摘要

Deep learning-based object detection methods are utilized for safety management at construction sites, which require large-scale, high-quality, and well-labeled datasets for training. The existing construction datasets are relatively small due to the high expense of labor-intensive annotation, and the varying quality of the construction images also affects the detection performance of the model. To address the limitations of datasets, this study proposes a new method for construction object detection by integrating super-resolution and semi-supervised learning. The proposed method improves the quality of construction images and achieves excellent detection performance with limited labeled data. First, the Real-ESRGAN model is introduced to improve the quality of construction images and make the construction objects visible. The proposed super-resolution method can enhance the texture details of low-resolution images, hence improving the performance of object detection models. Second, the mean-teacher network is adopted to expand the training set, thus avoiding the labor-intensive annotation work. To verify the effectiveness of the proposed method, the method is applied to the state-of-the-art Yolov5 object detection model, and construction images from the Site Object Detection Dataset (SODA) with different labeled data proportions (from 10% to 50% in 10% intervals with an extreme case of 5%) are used as the training set. By comparing with the existing supervised learning method, it is shown that the proposed method can achieve better detection performance. In particular, the method is more effective in enhancing detection performance when the proportion of the labeled data is smaller, which is of great practical value in real-world engineering. The experimental results show the potential of the proposed method in improving image quality and reducing the expense of developing construction datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助果汁采纳,获得10
2秒前
谨慎狗完成签到,获得积分10
2秒前
3秒前
Summer应助坤坤采纳,获得20
4秒前
4秒前
luka发布了新的文献求助10
5秒前
kennynuaa发布了新的文献求助10
5秒前
5秒前
ldysaber发布了新的文献求助10
5秒前
applepie完成签到,获得积分10
6秒前
kkx完成签到 ,获得积分10
6秒前
威武英姑完成签到,获得积分10
6秒前
6秒前
小鱼鱼Fish发布了新的文献求助10
6秒前
SU15964707813完成签到,获得积分10
7秒前
打打应助Vek采纳,获得10
7秒前
夜雨清痕y发布了新的文献求助10
8秒前
8秒前
8秒前
聪慧百合发布了新的文献求助10
9秒前
Hazel完成签到,获得积分10
10秒前
专注灵凡发布了新的文献求助10
10秒前
sharppanda完成签到,获得积分10
11秒前
jewel完成签到 ,获得积分10
11秒前
huyulele完成签到,获得积分10
11秒前
哈哈哈发布了新的文献求助10
13秒前
Marcie完成签到,获得积分10
13秒前
anne完成签到 ,获得积分10
14秒前
小凉完成签到 ,获得积分10
14秒前
一只半夏完成签到,获得积分10
14秒前
14秒前
广隶完成签到,获得积分10
15秒前
风中的怜阳完成签到,获得积分10
15秒前
yujie完成签到 ,获得积分10
15秒前
15秒前
高贵花瓣应助费费Queen采纳,获得10
15秒前
王翎力完成签到,获得积分10
16秒前
翟淑雨完成签到,获得积分20
16秒前
17秒前
xcy完成签到 ,获得积分10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151225
求助须知:如何正确求助?哪些是违规求助? 2802672
关于积分的说明 7849833
捐赠科研通 2460115
什么是DOI,文献DOI怎么找? 1309560
科研通“疑难数据库(出版商)”最低求助积分说明 628956
版权声明 601760