材料科学
双金属片
空位缺陷
电化学
调制(音乐)
硫化物
纳米技术
电极
冶金
结晶学
物理化学
金属
哲学
化学
美学
作者
Jiawei Guo,Hongbo Zhao,Zhongwei Yang,Longwei Wang,Aizhu Wang,Jian Zhang,Longhua Ding,Longfei Wang,Hong Liu,Xin Yu
标识
DOI:10.1002/adfm.202315714
摘要
Abstract Transition bimetallic sulfides show significant promise for energy‐related applications because of their plentiful active sites and synergistic redox activity. However, limited pore size and low‐conductivity issues hinder their application. The structure of NiCo–S with rich sulfur vacancies is first predicted by density functional theory (DFT) calculations. Different sulfur vacancy concentrations are modeled by DFT calculations, and the results confirm that sulfur vacancies enhance the conductivity of the electrode material and are more beneficial for the adsorption of OH * species. It is verified by the differential charge density that the electric field formed on the surface of the electrode can lead to strong interfacial interactions by electron aggregation, which promotes electron/ion transfer kinetics. Furthermore, NiCo–S nanosheets are prepared on carbon cloth enriched with different concentrations of sulfur vacancies (denoted as NiCo‐Sv‐x, with x representing the concentration of sulfur vacancies) by sulfide etching NiCo‐MOF and annealing under H 2 /Ar atmosphere. The NiCo‐Sv‐x electrodes obtained are applied to the cathode of supercapacitors and the anode of the oxygen evolution reaction. Through combining experimental and theoretical analysis, the effect of vacancy defect engineering on the electrochemical performance of the electrode materials is further confirmed.
科研通智能强力驱动
Strongly Powered by AbleSci AI