Ensemble learning-based stability improvement method for feature selection towards performance prediction

理论(学习稳定性) 特征选择 集成学习 人工智能 机器学习 选择(遗传算法) 计算机科学 特征(语言学) 模式识别(心理学) 工程类 哲学 语言学
作者
Xin Feng,Yu-Long Zhao,Meng Zhang,Ying Zuo,Xiaofu Zou,Fei Tao
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:74: 55-67
标识
DOI:10.1016/j.jmsy.2024.03.001
摘要

The uncertainty and complexity of real data collected in the industrial production process increase the difficulty in data-based knowledge discovering. Feature selection is an important step to remove redundant and irrelevant data, and thus it is essential to construct an efficient feature selection method. In this paper, an ensemble learning-driven stable feature selection method is proposed to improve the stability and accuracy of the feature selection. Firstly, datasets of different characteristics are generated to increase the diversity of data segments for feature selection. Secondly, two criteria (stability and prediction accuracy) are adopted to evaluate the performance weight of each feature selection algorithm, to ensure that the results of high-performance selectors have high priority in the algorithm aggregation process. Thirdly, the feature subsets are weighted and filtered based on expert experience to further ensure its stability. Finally, comparative experiments are conducted to show the effectiveness of the proposed method. Comparing with other methods, the proposed one can achieve the highest overall stability for feature selection (namely 0.936 measured by the Spearman rank correlation coefficient), and select the reasonable feature subset for data-driven prediction with the low mean absolute error (namely 0.315 as the average level).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yziii应助QIQ采纳,获得20
1秒前
1秒前
1秒前
2秒前
水天一色完成签到,获得积分10
2秒前
闪闪完成签到 ,获得积分10
3秒前
彭于彦祖应助Satria采纳,获得30
4秒前
孙星完成签到,获得积分10
4秒前
Jaya666发布了新的文献求助10
4秒前
小二郎应助亓大大采纳,获得10
5秒前
涛涛完成签到,获得积分20
5秒前
xiaowentu完成签到,获得积分10
6秒前
6秒前
www完成签到,获得积分10
6秒前
6秒前
球球啦完成签到,获得积分20
7秒前
7秒前
爆米花应助心灵美的幼珊采纳,获得10
7秒前
Jeffrey发布了新的文献求助10
7秒前
李健应助YZZ采纳,获得10
8秒前
香蕉觅云应助广隶采纳,获得10
9秒前
霸气的大船完成签到,获得积分20
9秒前
Astro关注了科研通微信公众号
9秒前
9秒前
10秒前
11秒前
传奇3应助怕孤独的乌龟采纳,获得10
11秒前
哎嘿应助小十一采纳,获得10
11秒前
激动的丑完成签到,获得积分10
12秒前
百里如雪完成签到,获得积分10
12秒前
DrLuo发布了新的文献求助10
12秒前
JamesPei应助涛涛采纳,获得10
12秒前
浩西发布了新的文献求助10
12秒前
13秒前
下水道完成签到,获得积分20
13秒前
Cc发布了新的文献求助30
13秒前
hcmsaobang2001完成签到,获得积分10
13秒前
13秒前
鹿友菌完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151225
求助须知:如何正确求助?哪些是违规求助? 2802672
关于积分的说明 7849833
捐赠科研通 2460115
什么是DOI,文献DOI怎么找? 1309560
科研通“疑难数据库(出版商)”最低求助积分说明 628956
版权声明 601760