Dense video super-resolution time-differential network with feature enrichment module

计算机科学 特征(语言学) 人工智能 失真(音乐) 帧(网络) 计算机视觉 块(置换群论) 光流 特征提取 残余物 模式识别(心理学) 图像(数学) 算法 数学 电信 放大器 哲学 语言学 几何学 带宽(计算)
作者
Lijun Wu,Ma Yong,Zhicong Chen
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-3665436/v1
摘要

Abstract Video super-resolution is capable of recovering high-resolution images from multiple low-resolution images, where loop structures are a common frame choice for video super-resolution tasks. BasicVSR employs bidirectional propagation and feature alignment to efficiently utilize information from the entire input video. In this work, we improved the performance of the network by revisiting the role of the various modules in BasicVSR and redesigning the network. Firstly, we will maintain centralized communication with the reference frame through the reference-based feature enrichment module after optical flow distortion, which is helpful for handling complex motion, and at the same time, for the selected keyframe, according to the degree of motion deviation of the adjacent frame relative to the keyframe, it is divided into two different regions, and the model with different receptive fields is adopted for feature extraction to further alleviate the accumulation of alignment errors. In the feature correction module, we modify the simple residual block stack to RIR structure, and fuse different levels of features with each other, which can make the final feature information more comprehensive and abundant. In addition, dense connection are introduced in the reconstruction module to promote the full use of hierarchical feature information for better reconstruction. Experimental verification is carried out on two public datasets: Vid4 and REDS4, and the comparative results show that compared with BasicVSR, the PSNR quantitative indexes of the proposed improved model on the two datasets are improved by 0.20dB and 0.33dB, respectively. In addition, from the point of view of visual perception, the model can effectively improve the clarity of the image and reduce artifacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hbhbj完成签到,获得积分10
2秒前
FashionBoy应助杨凤艳采纳,获得10
2秒前
mengzhe完成签到,获得积分10
3秒前
3秒前
zhu发布了新的文献求助50
4秒前
4秒前
bin完成签到,获得积分10
7秒前
迟迟完成签到,获得积分20
8秒前
sadascaqwqw完成签到 ,获得积分10
9秒前
郝雁山发布了新的文献求助10
10秒前
天天快乐应助白夜采纳,获得10
10秒前
领导范儿应助勤恳小丸子采纳,获得10
12秒前
12秒前
传奇3应助Wa采纳,获得10
13秒前
zhangz完成签到,获得积分10
14秒前
充电宝应助hkahai采纳,获得10
16秒前
19秒前
郝雁山完成签到,获得积分10
20秒前
ussiMi完成签到 ,获得积分10
20秒前
归于水云身完成签到 ,获得积分10
21秒前
22秒前
九又四分之三完成签到,获得积分10
22秒前
23秒前
23秒前
上官若男应助luckkit采纳,获得10
23秒前
24秒前
25秒前
fifteen应助科研通管家采纳,获得10
25秒前
852应助科研通管家采纳,获得10
25秒前
隐形曼青应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
善良夜梅应助科研通管家采纳,获得10
25秒前
lin应助未可采纳,获得20
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
26秒前
27秒前
王壮壮完成签到 ,获得积分10
28秒前
30秒前
Kismet发布了新的文献求助10
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260051
求助须知:如何正确求助?哪些是违规求助? 2901415
关于积分的说明 8315408
捐赠科研通 2570932
什么是DOI,文献DOI怎么找? 1396761
科研通“疑难数据库(出版商)”最低求助积分说明 653558
邀请新用户注册赠送积分活动 631979