Superwetting membrane-based strategy for highly efficient separation of dimethyl carbonate and methanol

碳酸二甲酯 甲醇 化学 酯交换 渗透 渗透汽化 化学工程 分子 化学极性 有机化学 生物化学 工程类
作者
Hui Li,Yan Huang,Wenguang Dou,Hongli Ma,Чан Лю,Xuanting Zhao,Xingchao Chen,Yuqiang Zhang,Yuchao Zhao,Hongliang Liu,Shen Diao
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:341: 126877-126877 被引量:2
标识
DOI:10.1016/j.seppur.2024.126877
摘要

Dimethyl carbonate (DMC) produced through transesterification, which involves the reaction of methanol (MeOH) with a suitable ester, has been considered as an attractive route for industrial production. Although high-purity DMC can be obtained from DMC/MeOH mixture by energy-intensive extractive distillation or time-consuming pervaporation (PV), it is still challenging to produce pure DMC in an energy-saving and high-efficiency manner. Here we demonstrate an energy-economy yet efficient superwetting membrane (SWM)-based strategy to produce pure DMC by combining porous polytetrafluoroethylene (PTFE) as the solid membrane and eco-friendly water molecules as the liquid inductive agent. The relatively low polar DMC can rapidly and selectively permeate the nonpolar PTFE membrane by nonpolar interaction between PTFE and DMC. Meanwhile, the high polar water molecules generate strong hydration with MeOH, which makes the relatively high polar MeOH/H2O being blocked by the nonpolar PTFE membrane. The SWM system exhibits outstanding separation flux of 1090 L m−2 h−1, with DMC purity higher than 93 wt%. Furthermore, taking advantage of the easy assembly of this SWM with conventional PV, we can produce DMC with purity of 99.4 wt%, showing great potential in practical DMC production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
harri完成签到,获得积分10
2秒前
2秒前
烟花应助huhu采纳,获得30
3秒前
李爱国应助碧蓝的汽车采纳,获得30
3秒前
3秒前
洛洛完成签到,获得积分10
3秒前
zhu发布了新的文献求助30
3秒前
斤斤完成签到,获得积分10
3秒前
nu发布了新的文献求助10
4秒前
4秒前
孟惜儿完成签到,获得积分10
7秒前
7秒前
8秒前
小龙虾发布了新的文献求助10
10秒前
HNNUYanY应助科研通管家采纳,获得10
11秒前
cloudtree应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得30
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
所所应助albertxin采纳,获得10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
11秒前
田様应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
冷静靖荷应助科研通管家采纳,获得10
12秒前
HNNUYanY应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
小付发布了新的文献求助10
12秒前
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Population Genetics 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3496185
求助须知:如何正确求助?哪些是违规求助? 3081130
关于积分的说明 9165933
捐赠科研通 2774062
什么是DOI,文献DOI怎么找? 1522307
邀请新用户注册赠送积分活动 705841
科研通“疑难数据库(出版商)”最低求助积分说明 703089