Efficient crowd density estimation with edge intelligence via structural reparameterization and knowledge transfer

计算机科学 GSM演进的增强数据速率 密度估算 人工智能 学习迁移 估计 知识转移 传输(计算) 机器学习 数学 统计 估计员 知识管理 管理 并行计算 经济
作者
Chenxi Lin,Xiaojian Hu
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:154: 111366-111366 被引量:1
标识
DOI:10.1016/j.asoc.2024.111366
摘要

Crowd stampedes and related incidents pose significant dangers to public safety and have resulted in numerous fatalities over the past few decades. Estimating crowd density in real-time can help avoid stampedes by providing early warning systems to prevent overcrowding and manage the flow of people. With the increasing prevalence of Internet of Things (IoT), the application of edge computing for field pedestrian density estimation can help to enhance security and efficiency of system. To deal with the issue of crowd scale variation, most previous works rely on heavy backbone networks or complex module, which require high runtime consumption and severely limits the deployment scope of their work. To overcome this issue, we propose multi-branch model Repmobilenet. For multi-scale spatial feature extraction. Repmobilenet equips with lightweight multi-branch depthwise separable convolutional block (DSBlock), which can effectively extract multi-scale feature of dense crowd to cope with scale variation. In the inference phase, the multi-branch structure can be transformed into a single-branch feed-forward structure through structural reparameterization. By this way, Repmobilenet can use multi-branch over-parameterized topology to capture more dense spatial features during training stage and decrease inference latency during inference stage. We also added dilated convolutions in the backend to expand the receptive field of the model. Comparison to state-of-the-art methods, proposed Repmobilenet is able to achieve comparable counting performance while maintaining small model size and low inference latency in ShanghaiTech benchmark. At last, we introduce a multi-layer knowledge distillation method to further increase the model's fitting capability. By imitating the feature of multiple intermediate layers and final output soft ground truth of the teacher model, the student model can learn compact and efficient knowledge without increasing model size and inference latency. The code can be found in https://github.com/lcxxxiii/Repmobilenet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
852应助花花采纳,获得10
2秒前
㊣㊣完成签到,获得积分10
2秒前
HAHA完成签到 ,获得积分10
2秒前
3秒前
4秒前
xuxuxuxu发布了新的文献求助10
4秒前
youlingduxiu发布了新的文献求助10
4秒前
Owen应助聪明眼睛采纳,获得10
5秒前
自律的晏子完成签到 ,获得积分10
5秒前
活力依云发布了新的文献求助10
5秒前
爱你完成签到,获得积分10
6秒前
端庄洪纲发布了新的文献求助10
6秒前
6秒前
bzc229完成签到,获得积分10
6秒前
123完成签到,获得积分10
6秒前
wangteng发布了新的文献求助10
7秒前
7秒前
不一完成签到,获得积分10
7秒前
无私的芹发布了新的文献求助10
7秒前
852发布了新的文献求助10
7秒前
7秒前
7秒前
xzn1123应助甜蜜鹭洋采纳,获得10
7秒前
Lucas应助Moshiqi采纳,获得10
8秒前
LYZSh完成签到,获得积分10
9秒前
科目三应助baoziya采纳,获得10
9秒前
理想发布了新的文献求助10
9秒前
9秒前
沧海泪发布了新的文献求助10
9秒前
10秒前
HAHA关注了科研通微信公众号
10秒前
帅哥完成签到,获得积分20
10秒前
Ava应助mm采纳,获得10
11秒前
知己完成签到,获得积分10
12秒前
13841881385完成签到,获得积分10
12秒前
咕咚咕咚完成签到,获得积分10
12秒前
12秒前
科文完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951800
求助须知:如何正确求助?哪些是违规求助? 3497233
关于积分的说明 11086336
捐赠科研通 3227767
什么是DOI,文献DOI怎么找? 1784520
邀请新用户注册赠送积分活动 868692
科研通“疑难数据库(出版商)”最低求助积分说明 801163