Efficient crowd density estimation with edge intelligence via structural reparameterization and knowledge transfer

计算机科学 GSM演进的增强数据速率 密度估算 人工智能 学习迁移 估计 知识转移 传输(计算) 机器学习 数学 统计 估计员 知识管理 管理 并行计算 经济
作者
Chenxi Lin,Xiaojian Hu
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:154: 111366-111366 被引量:1
标识
DOI:10.1016/j.asoc.2024.111366
摘要

Crowd stampedes and related incidents pose significant dangers to public safety and have resulted in numerous fatalities over the past few decades. Estimating crowd density in real-time can help avoid stampedes by providing early warning systems to prevent overcrowding and manage the flow of people. With the increasing prevalence of Internet of Things (IoT), the application of edge computing for field pedestrian density estimation can help to enhance security and efficiency of system. To deal with the issue of crowd scale variation, most previous works rely on heavy backbone networks or complex module, which require high runtime consumption and severely limits the deployment scope of their work. To overcome this issue, we propose multi-branch model Repmobilenet. For multi-scale spatial feature extraction. Repmobilenet equips with lightweight multi-branch depthwise separable convolutional block (DSBlock), which can effectively extract multi-scale feature of dense crowd to cope with scale variation. In the inference phase, the multi-branch structure can be transformed into a single-branch feed-forward structure through structural reparameterization. By this way, Repmobilenet can use multi-branch over-parameterized topology to capture more dense spatial features during training stage and decrease inference latency during inference stage. We also added dilated convolutions in the backend to expand the receptive field of the model. Comparison to state-of-the-art methods, proposed Repmobilenet is able to achieve comparable counting performance while maintaining small model size and low inference latency in ShanghaiTech benchmark. At last, we introduce a multi-layer knowledge distillation method to further increase the model's fitting capability. By imitating the feature of multiple intermediate layers and final output soft ground truth of the teacher model, the student model can learn compact and efficient knowledge without increasing model size and inference latency. The code can be found in https://github.com/lcxxxiii/Repmobilenet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鳄鱼发布了新的文献求助30
1秒前
去看海嘛应助大月采纳,获得10
2秒前
科研小肖完成签到,获得积分10
3秒前
3秒前
5秒前
冰刀完成签到,获得积分10
6秒前
7秒前
姜鸽发布了新的文献求助10
8秒前
8秒前
whh123发布了新的文献求助10
10秒前
悲凉的白开水完成签到,获得积分10
10秒前
无花果应助想读博的小羊采纳,获得10
11秒前
11秒前
顺心小凝完成签到,获得积分10
11秒前
星辰大海应助chao采纳,获得10
12秒前
xiaoKai发布了新的文献求助10
13秒前
小琪猪完成签到,获得积分10
13秒前
小可完成签到 ,获得积分10
14秒前
lhp发布了新的文献求助10
14秒前
14秒前
14秒前
Helic完成签到,获得积分10
15秒前
15秒前
tennisgirl完成签到 ,获得积分10
16秒前
16秒前
xxaqs完成签到,获得积分10
17秒前
17秒前
我的miemie发布了新的文献求助10
17秒前
杠赛来完成签到,获得积分10
18秒前
丘比特应助顺心小凝采纳,获得10
18秒前
小鳄鱼完成签到,获得积分10
18秒前
小马甲应助酷酷的起眸采纳,获得10
20秒前
20秒前
21秒前
怡然灵珊发布了新的文献求助10
21秒前
卟乖发布了新的文献求助30
22秒前
ll完成签到,获得积分10
24秒前
姜鸽完成签到,获得积分10
24秒前
我的miemie完成签到,获得积分10
26秒前
欧耶完成签到,获得积分10
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152014
求助须知:如何正确求助?哪些是违规求助? 2803297
关于积分的说明 7853218
捐赠科研通 2460777
什么是DOI,文献DOI怎么找? 1310024
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601765