MSFlow: Multiscale Flow-Based Framework for Unsupervised Anomaly Detection

异常检测 计算机科学 人工智能 模式识别(心理学)
作者
Yixuan Zhou,Xing Xu,Jingkuan Song,Fumin Shen,Heng Tao Shen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:23
标识
DOI:10.1109/tnnls.2023.3344118
摘要

Unsupervised anomaly detection (UAD) attracts a lot of research interest and drives widespread applications, where only anomaly-free samples are available for training. Some UAD applications intend to locate the anomalous regions further even without any anomaly information. Although the absence of anomalous samples and annotations deteriorates the UAD performance, an inconspicuous, yet powerful statistics model, the normalizing flows, is appropriate for anomaly detection (AD) and localization in an unsupervised fashion. The flow-based probabilistic models, only trained on anomaly-free data, can efficiently distinguish unpredictable anomalies by assigning them much lower likelihoods than normal data. Nevertheless, the size variation of unpredictable anomalies introduces another inconvenience to the flow-based methods for high-precision AD and localization. To generalize the anomaly size variation, we propose a novel m ulti s cale flow -based framework (MSFlow) composed of asymmetrical parallel flows followed by a fusion flow to exchange multiscale perceptions. Moreover, different multiscale aggregation strategies are adopted for image-wise AD and pixel-wise anomaly localization according to the discrepancy between them. The proposed MSFlow is evaluated on three AD datasets, significantly outperforming existing methods. Notably, on the challenging MVTec AD benchmark, our MSFlow achieves a new state-of-the-art (SOTA) with a detection AUORC score of up to 99.7%, localization AUCROC score of 98.8% and PRO score of 97.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yznfly应助独特雅绿采纳,获得30
1秒前
mnliao完成签到,获得积分10
2秒前
研友_8yNl3L发布了新的文献求助30
2秒前
xixi完成签到 ,获得积分10
2秒前
科文完成签到,获得积分10
3秒前
天天快乐应助zeppeli采纳,获得10
3秒前
田様应助152455采纳,获得10
4秒前
clayluo发布了新的文献求助10
4秒前
5秒前
grzzz完成签到,获得积分10
5秒前
怕黑的班完成签到,获得积分10
5秒前
欣慰的酒窝完成签到 ,获得积分10
5秒前
最爱小胖宝的大胖宝完成签到,获得积分10
5秒前
所所应助空白采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
陈远青发布了新的文献求助10
7秒前
aa发布了新的文献求助10
8秒前
上官若男应助波粒海苔采纳,获得10
8秒前
D调的华丽完成签到,获得积分10
8秒前
9秒前
iboy完成签到,获得积分10
9秒前
tt完成签到,获得积分10
9秒前
周宸完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
DanguiOA完成签到,获得积分10
10秒前
10秒前
勤劳的小牛蛙应助哈哈采纳,获得10
10秒前
10秒前
fy207发布了新的文献求助10
10秒前
记录者完成签到,获得积分10
10秒前
刚子完成签到,获得积分10
10秒前
aaa发布了新的文献求助10
11秒前
漂亮的天宇完成签到 ,获得积分10
12秒前
orangel完成签到,获得积分10
12秒前
橙子完成签到 ,获得积分10
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953650
求助须知:如何正确求助?哪些是违规求助? 3499409
关于积分的说明 11095552
捐赠科研通 3229987
什么是DOI,文献DOI怎么找? 1785841
邀请新用户注册赠送积分活动 869592
科研通“疑难数据库(出版商)”最低求助积分说明 801479