MSFlow: Multiscale Flow-Based Framework for Unsupervised Anomaly Detection

异常检测 计算机科学 人工智能 模式识别(心理学)
作者
Yixuan Zhou,Xing Xu,Jingkuan Song,Fumin Shen,Heng Tao Shen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 2437-2450 被引量:48
标识
DOI:10.1109/tnnls.2023.3344118
摘要

Unsupervised anomaly detection (UAD) attracts a lot of research interest and drives widespread applications, where only anomaly-free samples are available for training. Some UAD applications intend to locate the anomalous regions further even without any anomaly information. Although the absence of anomalous samples and annotations deteriorates the UAD performance, an inconspicuous, yet powerful statistics model, the normalizing flows, is appropriate for anomaly detection (AD) and localization in an unsupervised fashion. The flow-based probabilistic models, only trained on anomaly-free data, can efficiently distinguish unpredictable anomalies by assigning them much lower likelihoods than normal data. Nevertheless, the size variation of unpredictable anomalies introduces another inconvenience to the flow-based methods for high-precision AD and localization. To generalize the anomaly size variation, we propose a novel multiscale flow-based framework (MSFlow) composed of asymmetrical parallel flows followed by a fusion flow to exchange multiscale perceptions. Moreover, different multiscale aggregation strategies are adopted for image-wise AD and pixel-wise anomaly localization according to the discrepancy between them. The proposed MSFlow is evaluated on three AD datasets, significantly outperforming existing methods. Notably, on the challenging MVTec AD benchmark, our MSFlow achieves a new state-of-the-art (SOTA) with a detection AUORC score of up to 99.7%, localization AUCROC score of 98.8% and PRO score of 97.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Harry应助123采纳,获得10
刚刚
完美世界应助zyc采纳,获得10
刚刚
刚刚
qizhia发布了新的文献求助10
刚刚
JamesPei应助小孟要努力采纳,获得10
1秒前
Buxi完成签到,获得积分10
1秒前
1秒前
LQY完成签到,获得积分20
2秒前
11158发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
Jasper应助怕孤单的抽屉采纳,获得10
3秒前
4秒前
早睡早起完成签到,获得积分10
4秒前
Akim应助龙华之士采纳,获得10
4秒前
匆匆而过完成签到 ,获得积分10
4秒前
5秒前
wyj发布了新的文献求助10
5秒前
英俊的铭应助贺兰采纳,获得10
6秒前
xu发布了新的文献求助10
6秒前
思源应助谥輄采纳,获得10
6秒前
坚定醉蓝发布了新的文献求助10
6秒前
JiadePeng完成签到,获得积分10
6秒前
6秒前
6秒前
浮游应助cyj采纳,获得10
7秒前
7秒前
小栩完成签到,获得积分10
8秒前
8秒前
white完成签到 ,获得积分10
9秒前
Owen应助小李采纳,获得10
9秒前
keep完成签到 ,获得积分10
9秒前
ti发布了新的文献求助10
9秒前
顾矜应助小田采纳,获得10
10秒前
Renge2023完成签到,获得积分20
10秒前
杨自强发布了新的文献求助10
10秒前
搜集达人应助Lin2019采纳,获得10
10秒前
等待惜文完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531594
求助须知:如何正确求助?哪些是违规求助? 4620404
关于积分的说明 14573182
捐赠科研通 4560142
什么是DOI,文献DOI怎么找? 2498713
邀请新用户注册赠送积分活动 1478629
关于科研通互助平台的介绍 1449993