MSFlow: Multiscale Flow-Based Framework for Unsupervised Anomaly Detection

异常检测 计算机科学 人工智能 模式识别(心理学)
作者
Yixuan Zhou,Xing Xu,Jingkuan Song,Fumin Shen,Heng Tao Shen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 2437-2450 被引量:48
标识
DOI:10.1109/tnnls.2023.3344118
摘要

Unsupervised anomaly detection (UAD) attracts a lot of research interest and drives widespread applications, where only anomaly-free samples are available for training. Some UAD applications intend to locate the anomalous regions further even without any anomaly information. Although the absence of anomalous samples and annotations deteriorates the UAD performance, an inconspicuous, yet powerful statistics model, the normalizing flows, is appropriate for anomaly detection (AD) and localization in an unsupervised fashion. The flow-based probabilistic models, only trained on anomaly-free data, can efficiently distinguish unpredictable anomalies by assigning them much lower likelihoods than normal data. Nevertheless, the size variation of unpredictable anomalies introduces another inconvenience to the flow-based methods for high-precision AD and localization. To generalize the anomaly size variation, we propose a novel multiscale flow-based framework (MSFlow) composed of asymmetrical parallel flows followed by a fusion flow to exchange multiscale perceptions. Moreover, different multiscale aggregation strategies are adopted for image-wise AD and pixel-wise anomaly localization according to the discrepancy between them. The proposed MSFlow is evaluated on three AD datasets, significantly outperforming existing methods. Notably, on the challenging MVTec AD benchmark, our MSFlow achieves a new state-of-the-art (SOTA) with a detection AUORC score of up to 99.7%, localization AUCROC score of 98.8% and PRO score of 97.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero发布了新的文献求助10
1秒前
wqy完成签到 ,获得积分10
2秒前
ANG发布了新的文献求助10
3秒前
微雨若,,完成签到 ,获得积分10
4秒前
rong完成签到,获得积分10
4秒前
bird完成签到,获得积分10
6秒前
新伟张发布了新的文献求助10
8秒前
猪猪hero发布了新的文献求助10
8秒前
天天快乐应助GLv采纳,获得10
9秒前
罗马没有马完成签到 ,获得积分10
9秒前
zik应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
心心子完成签到 ,获得积分10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
彭于彦祖应助科研通管家采纳,获得30
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
ymxlcfc完成签到 ,获得积分10
11秒前
老福贵儿应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
orixero应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
高兴醉薇完成签到 ,获得积分10
11秒前
自信的高山完成签到,获得积分10
11秒前
爆米花应助ANG采纳,获得10
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599964
求助须知:如何正确求助?哪些是违规求助? 4685775
关于积分的说明 14839249
捐赠科研通 4674464
什么是DOI,文献DOI怎么找? 2538479
邀请新用户注册赠送积分活动 1505631
关于科研通互助平台的介绍 1471109