MSFlow: Multiscale Flow-Based Framework for Unsupervised Anomaly Detection

异常检测 计算机科学 人工智能 模式识别(心理学)
作者
Yixuan Zhou,Xing Xu,Jingkuan Song,Fumin Shen,Heng Tao Shen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 2437-2450 被引量:48
标识
DOI:10.1109/tnnls.2023.3344118
摘要

Unsupervised anomaly detection (UAD) attracts a lot of research interest and drives widespread applications, where only anomaly-free samples are available for training. Some UAD applications intend to locate the anomalous regions further even without any anomaly information. Although the absence of anomalous samples and annotations deteriorates the UAD performance, an inconspicuous, yet powerful statistics model, the normalizing flows, is appropriate for anomaly detection (AD) and localization in an unsupervised fashion. The flow-based probabilistic models, only trained on anomaly-free data, can efficiently distinguish unpredictable anomalies by assigning them much lower likelihoods than normal data. Nevertheless, the size variation of unpredictable anomalies introduces another inconvenience to the flow-based methods for high-precision AD and localization. To generalize the anomaly size variation, we propose a novel multiscale flow-based framework (MSFlow) composed of asymmetrical parallel flows followed by a fusion flow to exchange multiscale perceptions. Moreover, different multiscale aggregation strategies are adopted for image-wise AD and pixel-wise anomaly localization according to the discrepancy between them. The proposed MSFlow is evaluated on three AD datasets, significantly outperforming existing methods. Notably, on the challenging MVTec AD benchmark, our MSFlow achieves a new state-of-the-art (SOTA) with a detection AUORC score of up to 99.7%, localization AUCROC score of 98.8% and PRO score of 97.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
winndsd2发布了新的文献求助100
1秒前
CodeCraft应助薛定谔的猫采纳,获得10
1秒前
上官若男应助善良青筠采纳,获得10
2秒前
sian发布了新的文献求助10
3秒前
友好无敌完成签到,获得积分10
3秒前
SDNUDRUG完成签到,获得积分10
4秒前
wangwang发布了新的文献求助10
6秒前
苹果发布了新的文献求助30
6秒前
6秒前
sw98318发布了新的文献求助30
7秒前
搜集达人应助Layman采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
毕业在即完成签到 ,获得积分20
8秒前
科研通AI2S应助winndsd2采纳,获得10
8秒前
9秒前
kukusa发布了新的文献求助20
10秒前
10秒前
晴天发布了新的文献求助50
10秒前
xmz应助爱大美采纳,获得10
10秒前
11秒前
852应助Theprisoners采纳,获得10
12秒前
yup发布了新的文献求助10
12秒前
qin202569完成签到,获得积分10
14秒前
传奇3应助英勇冰淇淋采纳,获得10
14秒前
14秒前
复杂沛白发布了新的文献求助10
14秒前
epmoct完成签到 ,获得积分10
15秒前
April发布了新的文献求助10
16秒前
老鼠完成签到 ,获得积分10
16秒前
17秒前
18秒前
sw98318完成签到,获得积分10
19秒前
19秒前
xxfsx应助wangwang采纳,获得10
19秒前
lululuao完成签到,获得积分10
21秒前
凉笙墨染完成签到,获得积分10
21秒前
Lucas应助晨儿采纳,获得10
22秒前
无奈曼云完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421804
求助须知:如何正确求助?哪些是违规求助? 4536726
关于积分的说明 14154805
捐赠科研通 4453274
什么是DOI,文献DOI怎么找? 2442809
邀请新用户注册赠送积分活动 1434152
关于科研通互助平台的介绍 1411293