MSFlow: Multiscale Flow-Based Framework for Unsupervised Anomaly Detection

异常检测 计算机科学 人工智能 模式识别(心理学)
作者
Yixuan Zhou,Xing Xu,Jingkuan Song,Fumin Shen,Heng Tao Shen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 2437-2450 被引量:48
标识
DOI:10.1109/tnnls.2023.3344118
摘要

Unsupervised anomaly detection (UAD) attracts a lot of research interest and drives widespread applications, where only anomaly-free samples are available for training. Some UAD applications intend to locate the anomalous regions further even without any anomaly information. Although the absence of anomalous samples and annotations deteriorates the UAD performance, an inconspicuous, yet powerful statistics model, the normalizing flows, is appropriate for anomaly detection (AD) and localization in an unsupervised fashion. The flow-based probabilistic models, only trained on anomaly-free data, can efficiently distinguish unpredictable anomalies by assigning them much lower likelihoods than normal data. Nevertheless, the size variation of unpredictable anomalies introduces another inconvenience to the flow-based methods for high-precision AD and localization. To generalize the anomaly size variation, we propose a novel multiscale flow-based framework (MSFlow) composed of asymmetrical parallel flows followed by a fusion flow to exchange multiscale perceptions. Moreover, different multiscale aggregation strategies are adopted for image-wise AD and pixel-wise anomaly localization according to the discrepancy between them. The proposed MSFlow is evaluated on three AD datasets, significantly outperforming existing methods. Notably, on the challenging MVTec AD benchmark, our MSFlow achieves a new state-of-the-art (SOTA) with a detection AUORC score of up to 99.7%, localization AUCROC score of 98.8% and PRO score of 97.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
在水一方应助啊哦采纳,获得10
2秒前
炼丹师应助Ray采纳,获得20
2秒前
NexusExplorer应助狗宅采纳,获得10
2秒前
2秒前
3秒前
不相变蜜完成签到,获得积分10
3秒前
小管完成签到,获得积分10
4秒前
善学以致用应助LIJIngcan采纳,获得10
4秒前
5秒前
111发布了新的文献求助10
5秒前
万能图书馆应助兴奋蘑菇采纳,获得10
6秒前
怀南完成签到,获得积分10
6秒前
落寞的易绿完成签到,获得积分10
6秒前
干净士晋发布了新的文献求助10
6秒前
yibo发布了新的文献求助30
7秒前
王志新完成签到,获得积分10
8秒前
远方橙发布了新的文献求助30
8秒前
woxiangbiye发布了新的文献求助10
8秒前
科研通AI5应助自信南霜采纳,获得10
9秒前
子星完成签到,获得积分10
9秒前
10秒前
解博童发布了新的文献求助10
10秒前
邢夏之完成签到,获得积分10
10秒前
11秒前
顾矜应助开心的迎海采纳,获得10
11秒前
Swagger完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
我是老大应助sun采纳,获得10
12秒前
充电宝应助灵巧晓亦采纳,获得10
13秒前
木几木几发布了新的文献求助30
13秒前
风衣拖地完成签到 ,获得积分10
14秒前
14秒前
方老师完成签到,获得积分10
14秒前
彩色的笑旋完成签到,获得积分20
14秒前
wanci应助干净士晋采纳,获得10
15秒前
做好自己发布了新的文献求助10
15秒前
狗宅发布了新的文献求助10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132616
求助须知:如何正确求助?哪些是违规求助? 4333988
关于积分的说明 13502721
捐赠科研通 4171020
什么是DOI,文献DOI怎么找? 2286820
邀请新用户注册赠送积分活动 1287691
关于科研通互助平台的介绍 1228590