MSFlow: Multiscale Flow-Based Framework for Unsupervised Anomaly Detection

异常检测 计算机科学 人工智能 模式识别(心理学)
作者
Yixuan Zhou,Xing Xu,Jingkuan Song,Fumin Shen,Heng Tao Shen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:23
标识
DOI:10.1109/tnnls.2023.3344118
摘要

Unsupervised anomaly detection (UAD) attracts a lot of research interest and drives widespread applications, where only anomaly-free samples are available for training. Some UAD applications intend to locate the anomalous regions further even without any anomaly information. Although the absence of anomalous samples and annotations deteriorates the UAD performance, an inconspicuous, yet powerful statistics model, the normalizing flows, is appropriate for anomaly detection (AD) and localization in an unsupervised fashion. The flow-based probabilistic models, only trained on anomaly-free data, can efficiently distinguish unpredictable anomalies by assigning them much lower likelihoods than normal data. Nevertheless, the size variation of unpredictable anomalies introduces another inconvenience to the flow-based methods for high-precision AD and localization. To generalize the anomaly size variation, we propose a novel m ulti s cale flow -based framework (MSFlow) composed of asymmetrical parallel flows followed by a fusion flow to exchange multiscale perceptions. Moreover, different multiscale aggregation strategies are adopted for image-wise AD and pixel-wise anomaly localization according to the discrepancy between them. The proposed MSFlow is evaluated on three AD datasets, significantly outperforming existing methods. Notably, on the challenging MVTec AD benchmark, our MSFlow achieves a new state-of-the-art (SOTA) with a detection AUORC score of up to 99.7%, localization AUCROC score of 98.8% and PRO score of 97.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
跳跃尔容发布了新的文献求助10
1秒前
青山发布了新的文献求助26
1秒前
1秒前
Agernon应助韦老虎采纳,获得10
2秒前
沉默沛岚发布了新的文献求助30
2秒前
2秒前
程程发布了新的文献求助10
2秒前
晨安发布了新的文献求助10
3秒前
3秒前
橙子完成签到,获得积分10
3秒前
3秒前
DrYang发布了新的文献求助10
3秒前
4秒前
哈哈大笑完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
特兰克斯发布了新的文献求助10
6秒前
危机的尔蝶完成签到,获得积分10
6秒前
mcsmdxs发布了新的文献求助10
7秒前
ccalvintan发布了新的文献求助10
7秒前
8秒前
8秒前
头发乱了发布了新的文献求助10
9秒前
天天快乐应助DrYang采纳,获得10
9秒前
含糊发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
完美世界应助幸福胡萝卜采纳,获得10
11秒前
通~发布了新的文献求助10
11秒前
12秒前
科目三应助Arnold采纳,获得10
12秒前
润润轩轩发布了新的文献求助10
13秒前
宗笑晴发布了新的文献求助10
13秒前
lucky完成签到,获得积分10
13秒前
糖糖发布了新的文献求助10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762