MSFlow: Multiscale Flow-Based Framework for Unsupervised Anomaly Detection

异常检测 计算机科学 人工智能 模式识别(心理学)
作者
Yixuan Zhou,Xing Xu,Jingkuan Song,Fumin Shen,Heng Tao Shen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:23
标识
DOI:10.1109/tnnls.2023.3344118
摘要

Unsupervised anomaly detection (UAD) attracts a lot of research interest and drives widespread applications, where only anomaly-free samples are available for training. Some UAD applications intend to locate the anomalous regions further even without any anomaly information. Although the absence of anomalous samples and annotations deteriorates the UAD performance, an inconspicuous, yet powerful statistics model, the normalizing flows, is appropriate for anomaly detection (AD) and localization in an unsupervised fashion. The flow-based probabilistic models, only trained on anomaly-free data, can efficiently distinguish unpredictable anomalies by assigning them much lower likelihoods than normal data. Nevertheless, the size variation of unpredictable anomalies introduces another inconvenience to the flow-based methods for high-precision AD and localization. To generalize the anomaly size variation, we propose a novel m ulti s cale flow -based framework (MSFlow) composed of asymmetrical parallel flows followed by a fusion flow to exchange multiscale perceptions. Moreover, different multiscale aggregation strategies are adopted for image-wise AD and pixel-wise anomaly localization according to the discrepancy between them. The proposed MSFlow is evaluated on three AD datasets, significantly outperforming existing methods. Notably, on the challenging MVTec AD benchmark, our MSFlow achieves a new state-of-the-art (SOTA) with a detection AUORC score of up to 99.7%, localization AUCROC score of 98.8% and PRO score of 97.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
You完成签到 ,获得积分10
刚刚
我要发SCI完成签到 ,获得积分10
2秒前
754完成签到,获得积分10
3秒前
Dr Niu应助猫头鹰采纳,获得10
4秒前
7秒前
三七完成签到,获得积分10
8秒前
儒雅的豁完成签到,获得积分10
8秒前
8秒前
炫炫炫发布了新的文献求助30
10秒前
踏实绮露完成签到 ,获得积分10
10秒前
灰灰成长中完成签到,获得积分10
11秒前
佳敏发布了新的文献求助10
12秒前
科研通AI2S应助xxx采纳,获得10
14秒前
木木发布了新的文献求助10
15秒前
勤恳的曼凡完成签到 ,获得积分10
15秒前
aojl90完成签到,获得积分10
18秒前
科研通AI5应助yangyang采纳,获得10
18秒前
Orange应助CX330采纳,获得10
18秒前
劉jLJH发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
111完成签到 ,获得积分10
21秒前
orixero应助ccl采纳,获得10
21秒前
21秒前
23秒前
24秒前
英俊的铭应助郦涔采纳,获得10
24秒前
tina发布了新的文献求助10
25秒前
cindy发布了新的文献求助10
26秒前
李志伟完成签到,获得积分10
26秒前
Owen应助zhizhi采纳,获得10
28秒前
yls发布了新的文献求助10
29秒前
30秒前
yangyang发布了新的文献求助10
31秒前
32秒前
33秒前
33秒前
34秒前
Truman完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4557986
求助须知:如何正确求助?哪些是违规求助? 3985120
关于积分的说明 12337955
捐赠科研通 3655518
什么是DOI,文献DOI怎么找? 2013851
邀请新用户注册赠送积分活动 1048667
科研通“疑难数据库(出版商)”最低求助积分说明 937092