MSFlow: Multiscale Flow-Based Framework for Unsupervised Anomaly Detection

异常检测 计算机科学 人工智能 模式识别(心理学)
作者
Yixuan Zhou,Xing Xu,Jingkuan Song,Fumin Shen,Heng Tao Shen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:36 (2): 2437-2450 被引量:48
标识
DOI:10.1109/tnnls.2023.3344118
摘要

Unsupervised anomaly detection (UAD) attracts a lot of research interest and drives widespread applications, where only anomaly-free samples are available for training. Some UAD applications intend to locate the anomalous regions further even without any anomaly information. Although the absence of anomalous samples and annotations deteriorates the UAD performance, an inconspicuous, yet powerful statistics model, the normalizing flows, is appropriate for anomaly detection (AD) and localization in an unsupervised fashion. The flow-based probabilistic models, only trained on anomaly-free data, can efficiently distinguish unpredictable anomalies by assigning them much lower likelihoods than normal data. Nevertheless, the size variation of unpredictable anomalies introduces another inconvenience to the flow-based methods for high-precision AD and localization. To generalize the anomaly size variation, we propose a novel multiscale flow-based framework (MSFlow) composed of asymmetrical parallel flows followed by a fusion flow to exchange multiscale perceptions. Moreover, different multiscale aggregation strategies are adopted for image-wise AD and pixel-wise anomaly localization according to the discrepancy between them. The proposed MSFlow is evaluated on three AD datasets, significantly outperforming existing methods. Notably, on the challenging MVTec AD benchmark, our MSFlow achieves a new state-of-the-art (SOTA) with a detection AUORC score of up to 99.7%, localization AUCROC score of 98.8% and PRO score of 97.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
paulmichael发布了新的文献求助10
刚刚
煜琪完成签到 ,获得积分10
刚刚
科研小白完成签到 ,获得积分10
2秒前
暗月青影完成签到,获得积分10
8秒前
imagine完成签到,获得积分10
10秒前
12秒前
任性的向薇完成签到,获得积分10
14秒前
我是老大应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
NICAI应助科研通管家采纳,获得10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
15秒前
Ava应助科研通管家采纳,获得20
15秒前
ding应助科研通管家采纳,获得10
15秒前
小葵花完成签到 ,获得积分10
15秒前
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
15秒前
拼搏应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
小新应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
Verity应助科研通管家采纳,获得10
16秒前
小新应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
18秒前
韩涵完成签到 ,获得积分10
20秒前
21秒前
adoudoo完成签到 ,获得积分10
22秒前
Jodie发布了新的文献求助10
26秒前
GaoChenxi完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555