Critical evaluation of established risk prediction models for acute respiratory distress syndrome in adult patients: A systematic review and meta‐analysis

医学 接收机工作特性 荟萃分析 逻辑回归 急性呼吸窘迫综合征 内科学 曲线下面积 科克伦图书馆 梅德林 风险评估 计算机科学 政治学 计算机安全 法学
作者
Tao Wei,Siyi Peng,Xuying Li,Jinhua Li,Mengdan Gu,Xiaoling Li
出处
期刊:Journal of Evidence-based Medicine [Wiley]
卷期号:16 (4): 465-476
标识
DOI:10.1111/jebm.12565
摘要

Abstract Aim To assess the performance of validated prediction models for acute respiratory distress syndrome (ARDS) by systematic review and meta‐analysis. Methods Eight databases (Medline, CINAHL, Embase, The Cochrane Library, CNKI, WanFang Data, Sinomed, and VIP) were searched up to March 26, 2023. Studies developed and validated a prediction model for ARDS in adult patients were included. Items on study design, incidence, derivation methods, predictors, discrimination, and calibration were collected. The risk of bias was assessed by the Prediction model Risk of Bias Assessment Tool. Models with a reported area under the curve of the receiver operating characteristic (AUC) metric were analyzed. Results A total of 25 studies were retrieved, including 48 unique prediction models. Discrimination was reported in all studies, with AUC ranging from 0.701 to 0.95. Emerged AUC value of the logistic regression model was 0.837 (95% CI: 0.814 to 0.859). Besides, the value in the ICU group was 0.856 (95% CI: 0.812 to 0.899), the acute pancreatitis group was 0.863 (95% CI: 0.844 to 0.882), and the postoperation group was 0.835 (95% CI: 0.808 to 0.861). In total, 24 of the included studies had a high risk of bias, which was mostly due to the improper methods in predictor screening (13/24), model calibration assessment (9/24), and dichotomization of continuous predictors (6/24). Conclusions This study shows that most prediction models for ARDS are at high risk of bias, and the discrimination ability of the model is excellent. Adherence to standardized guidelines for model development is necessary to derive a prediction model of value to clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助zhonghbush采纳,获得10
刚刚
啦啦啦啦啦完成签到,获得积分10
1秒前
hmx完成签到,获得积分10
1秒前
忧郁的人英完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
xhy发布了新的文献求助10
1秒前
晴天霹雳3732完成签到,获得积分0
2秒前
carbonhan完成签到,获得积分10
2秒前
MJT10086完成签到,获得积分10
2秒前
2秒前
天天快乐应助阿楠采纳,获得10
3秒前
忧郁的听露完成签到,获得积分20
3秒前
宇文天川完成签到,获得积分10
4秒前
4秒前
三十三完成签到,获得积分10
4秒前
顾矜应助li采纳,获得10
4秒前
4秒前
久久发布了新的文献求助10
5秒前
蔡小葵完成签到 ,获得积分10
5秒前
5秒前
科目三应助cd采纳,获得10
6秒前
研友_LXOvq8完成签到,获得积分10
6秒前
xu完成签到,获得积分10
6秒前
祝雲发布了新的文献求助10
6秒前
鳗鱼灵寒完成签到 ,获得积分10
6秒前
7秒前
7秒前
从这完成签到,获得积分10
7秒前
乐乱发布了新的文献求助10
7秒前
铁匠完成签到,获得积分10
7秒前
7秒前
8秒前
慕青应助抓恐龙采纳,获得10
8秒前
伶俐的不尤完成签到,获得积分20
8秒前
8秒前
zhouyan完成签到,获得积分10
9秒前
老疯智完成签到,获得积分10
9秒前
夜已深完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672