已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sparse Low-rank Adaptation of Pre-trained Language Models

计算机科学 秩(图论) 初始化 推论 过程(计算) 一般化 适应(眼睛) 代表(政治) 机器学习 人工智能 理论计算机科学 数学 数学分析 物理 光学 组合数学 操作系统 程序设计语言 法学 政治 政治学
作者
Ning Ding,Xue-Chuan Lv,Qiaosen Wang,Yulin Chen,Ligang Wu,Zhiyuan Liu,Maosong Sun
标识
DOI:10.18653/v1/2023.emnlp-main.252
摘要

Fine-tuning pre-trained large language models in a parameter-efficient manner is widely studied for its effectiveness and efficiency. The popular method of low-rank adaptation (LoRA) offers a notable approach, hypothesizing that the adaptation process is intrinsically low-dimensional. Although LoRA has demonstrated commendable performance, it is implemented with a fixed and unalterable intrinsic rank that might not always be the ideal choice. Recognizing the need for more flexible adaptation, we extend the methodology of LoRA to an innovative approach we call sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process. We achieve this through the incorporation of a gate unit optimized with proximal gradient method in the training stage, controlling the cardinality of rank under the sparsity of the gate. In the subsequent inference stage, we eliminate the parameter blocks corresponding to the zeroed-out ranks, to reduce each SoRA module back to a concise yet rank-optimal LoRA. Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters via updating in a sparse way. We further introduce a sparsifying scheduler for SoRA, aiming to examine the impact of the number of non-zero parameters on the model’s memorization and generalization. Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lijingyi完成签到,获得积分10
刚刚
可恶啊发布了新的文献求助10
1秒前
lj完成签到,获得积分20
2秒前
程青青完成签到,获得积分10
4秒前
年鱼精完成签到 ,获得积分10
5秒前
plant完成签到 ,获得积分10
9秒前
坦率完成签到,获得积分10
9秒前
Hello应助Catching采纳,获得10
13秒前
积极鸵鸟完成签到,获得积分10
14秒前
雾色笼晓树苍完成签到 ,获得积分10
15秒前
31秒前
lj发布了新的文献求助20
34秒前
ptsoup发布了新的文献求助10
38秒前
nn发布了新的文献求助10
39秒前
BowieHuang应助科研通管家采纳,获得30
41秒前
李健应助科研通管家采纳,获得10
41秒前
42秒前
医疗废物专用车乘客完成签到,获得积分10
43秒前
43秒前
43秒前
ST发布了新的文献求助10
48秒前
CC驳回了Akim应助
49秒前
落后凝莲发布了新的文献求助10
49秒前
正直的山雁完成签到,获得积分10
49秒前
慕青应助端庄的夜蕾采纳,获得10
53秒前
古月完成签到,获得积分10
54秒前
追寻夜香完成签到 ,获得积分10
55秒前
落后凝莲完成签到,获得积分10
56秒前
ST完成签到,获得积分10
56秒前
罗擎完成签到,获得积分10
57秒前
小詹同学完成签到 ,获得积分10
58秒前
1分钟前
Zeno完成签到 ,获得积分10
1分钟前
1分钟前
张泽林发布了新的文献求助10
1分钟前
1分钟前
jch完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Atopos发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568069
求助须知:如何正确求助?哪些是违规求助? 4652598
关于积分的说明 14701569
捐赠科研通 4594423
什么是DOI,文献DOI怎么找? 2520924
邀请新用户注册赠送积分活动 1492831
关于科研通互助平台的介绍 1463687