Model-Heterogeneous Semi-Supervised Federated Learning for Medical Image Segmentation

计算机科学 个性化 分割 注释 任务(项目管理) 图像分割 人工智能 机器学习 数据挖掘 情报检索 万维网 管理 经济
作者
Yuxi Ma,Jiacheng Wang,Jing Yang,Liansheng Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (5): 1804-1815 被引量:2
标识
DOI:10.1109/tmi.2023.3348982
摘要

Medical image segmentation is crucial in clinical diagnosis, helping physicians identify and analyze medical conditions. However, this task is often accompanied by challenges like sensitive data, privacy concerns, and expensive annotations. Current research focuses on personalized collaborative training of medical segmentation systems, ignoring that obtaining segmentation annotations is time-consuming and laborious. Achieving a perfect balance between annotation cost and segmentation performance while ensuring local model personalization has become a valuable direction. Therefore, this study introduces a novel Model-Heterogeneous Semi-Supervised Federated (HSSF) Learning framework. It proposes Regularity Condensation and Regularity Fusion to transfer autonomously selective knowledge to ensure the personalization between sites. In addition, to efficiently utilize unlabeled data and reduce the annotation burden, it proposes a Self-Assessment (SA) module and a Reliable Pseudo-Label Generation (RPG) module. The SA module generates self-assessment confidence in real-time based on model performance, and the RPG module generates reliable pseudo-label based on SA confidence. We evaluate our model separately on the Skin Lesion and Polyp Lesion datasets. The results show that our model performs better than other methods characterized by heterogeneity. Moreover, it exhibits highly commendable performance even in homogeneous designs, most notably in region-based metrics. The full range of resources can be readily accessed through the designated repository located at HSSF(github.com) on the platform of GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdgbdfbsfdvsd完成签到,获得积分10
刚刚
renahuang完成签到,获得积分10
2秒前
2秒前
欣欣完成签到,获得积分10
2秒前
yyymmma发布了新的文献求助10
2秒前
Hello应助lenon采纳,获得10
4秒前
6秒前
jj824完成签到 ,获得积分10
6秒前
7秒前
yy完成签到,获得积分10
10秒前
SL完成签到,获得积分10
10秒前
10秒前
11秒前
上官若男应助杪123采纳,获得10
11秒前
11秒前
酷酷季节发布了新的文献求助10
11秒前
雷豪完成签到,获得积分10
11秒前
13秒前
听筠完成签到,获得积分10
15秒前
酷波er应助kkkl采纳,获得10
15秒前
15秒前
包包发布了新的文献求助10
15秒前
16秒前
16秒前
lenon发布了新的文献求助10
16秒前
16秒前
小白也要发文章完成签到,获得积分10
17秒前
城南烤地瓜完成签到 ,获得积分10
18秒前
香蕉觅云应助景笑天采纳,获得10
19秒前
丰富天思发布了新的文献求助10
19秒前
sunrase完成签到,获得积分10
19秒前
20秒前
小点点发布了新的文献求助10
20秒前
矮小的凝冬完成签到,获得积分10
21秒前
火星上的曼彤完成签到 ,获得积分10
22秒前
22秒前
万能图书馆应助罐罐儿采纳,获得10
23秒前
CodeCraft应助nature采纳,获得10
23秒前
丘比特应助包包采纳,获得10
23秒前
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149784
求助须知:如何正确求助?哪些是违规求助? 2800775
关于积分的说明 7841901
捐赠科研通 2458351
什么是DOI,文献DOI怎么找? 1308425
科研通“疑难数据库(出版商)”最低求助积分说明 628499
版权声明 601706