Model-Heterogeneous Semi-Supervised Federated Learning for Medical Image Segmentation

计算机科学 个性化 分割 注释 任务(项目管理) 图像分割 人工智能 机器学习 数据挖掘 情报检索 万维网 管理 经济
作者
Yuxi Ma,Jiacheng Wang,Jing Yang,Liansheng Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (5): 1804-1815 被引量:10
标识
DOI:10.1109/tmi.2023.3348982
摘要

Medical image segmentation is crucial in clinical diagnosis, helping physicians identify and analyze medical conditions. However, this task is often accompanied by challenges like sensitive data, privacy concerns, and expensive annotations. Current research focuses on personalized collaborative training of medical segmentation systems, ignoring that obtaining segmentation annotations is time-consuming and laborious. Achieving a perfect balance between annotation cost and segmentation performance while ensuring local model personalization has become a valuable direction. Therefore, this study introduces a novel Model-Heterogeneous Semi-Supervised Federated (HSSF) Learning framework. It proposes Regularity Condensation and Regularity Fusion to transfer autonomously selective knowledge to ensure the personalization between sites. In addition, to efficiently utilize unlabeled data and reduce the annotation burden, it proposes a Self-Assessment (SA) module and a Reliable Pseudo-Label Generation (RPG) module. The SA module generates self-assessment confidence in real-time based on model performance, and the RPG module generates reliable pseudo-label based on SA confidence. We evaluate our model separately on the Skin Lesion and Polyp Lesion datasets. The results show that our model performs better than other methods characterized by heterogeneity. Moreover, it exhibits highly commendable performance even in homogeneous designs, most notably in region-based metrics. The full range of resources can be readily accessed through the designated repository located at HSSF(github.com) on the platform of GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和谐的阁发布了新的文献求助10
1秒前
1秒前
lanlan完成签到 ,获得积分10
2秒前
2秒前
3秒前
5秒前
ylq发布了新的文献求助10
5秒前
Lucas应助林海国采纳,获得10
5秒前
rurui发布了新的文献求助10
7秒前
8秒前
我是老大应助11采纳,获得10
9秒前
zyl发布了新的文献求助10
12秒前
12秒前
疯狂的乌发布了新的文献求助10
13秒前
17秒前
ARNI完成签到,获得积分10
21秒前
领导范儿应助疯狂的乌采纳,获得10
24秒前
rurui发布了新的文献求助10
25秒前
烟花应助afbb采纳,获得10
25秒前
zyl完成签到,获得积分10
26秒前
科研通AI5应助灰灰采纳,获得10
29秒前
29秒前
30秒前
李健的粉丝团团长应助ylq采纳,获得10
30秒前
30秒前
搜集达人应助ARNI采纳,获得20
32秒前
听风完成签到 ,获得积分10
33秒前
酷波er应助Ever余儿采纳,获得10
34秒前
domingo发布了新的文献求助10
34秒前
深情安青应助sparrow采纳,获得10
35秒前
从容傲柏发布了新的文献求助10
36秒前
视野胤发布了新的文献求助10
36秒前
华仔应助科研通管家采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
ED应助科研通管家采纳,获得10
37秒前
Rondab应助科研通管家采纳,获得10
37秒前
情怀应助科研通管家采纳,获得10
37秒前
斯文败类应助科研通管家采纳,获得10
37秒前
今后应助科研通管家采纳,获得10
37秒前
Lc应助科研通管家采纳,获得10
37秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993004
求助须知:如何正确求助?哪些是违规求助? 3533831
关于积分的说明 11263946
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882968
科研通“疑难数据库(出版商)”最低求助积分说明 809629