Model-Heterogeneous Semi-Supervised Federated Learning for Medical Image Segmentation

计算机科学 个性化 分割 注释 任务(项目管理) 图像分割 人工智能 机器学习 数据挖掘 情报检索 万维网 管理 经济
作者
Yuxi Ma,Jiacheng Wang,Jing Yang,Liansheng Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (5): 1804-1815 被引量:3
标识
DOI:10.1109/tmi.2023.3348982
摘要

Medical image segmentation is crucial in clinical diagnosis, helping physicians identify and analyze medical conditions. However, this task is often accompanied by challenges like sensitive data, privacy concerns, and expensive annotations. Current research focuses on personalized collaborative training of medical segmentation systems, ignoring that obtaining segmentation annotations is time-consuming and laborious. Achieving a perfect balance between annotation cost and segmentation performance while ensuring local model personalization has become a valuable direction. Therefore, this study introduces a novel Model-Heterogeneous Semi-Supervised Federated (HSSF) Learning framework. It proposes Regularity Condensation and Regularity Fusion to transfer autonomously selective knowledge to ensure the personalization between sites. In addition, to efficiently utilize unlabeled data and reduce the annotation burden, it proposes a Self-Assessment (SA) module and a Reliable Pseudo-Label Generation (RPG) module. The SA module generates self-assessment confidence in real-time based on model performance, and the RPG module generates reliable pseudo-label based on SA confidence. We evaluate our model separately on the Skin Lesion and Polyp Lesion datasets. The results show that our model performs better than other methods characterized by heterogeneity. Moreover, it exhibits highly commendable performance even in homogeneous designs, most notably in region-based metrics. The full range of resources can be readily accessed through the designated repository located at HSSF(github.com) on the platform of GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
MUSTer一一完成签到 ,获得积分10
1秒前
通通通完成签到,获得积分10
1秒前
1秒前
务实的菓完成签到 ,获得积分10
2秒前
似水流年完成签到,获得积分10
2秒前
An慧完成签到,获得积分10
2秒前
Hello应助阿金采纳,获得10
2秒前
2秒前
2秒前
4秒前
顾夏包完成签到,获得积分10
4秒前
小土豆发布了新的文献求助50
5秒前
科研通AI5应助跑在颖采纳,获得10
5秒前
追寻代真发布了新的文献求助10
6秒前
mrmrer完成签到,获得积分20
6秒前
6秒前
6秒前
毛慢慢发布了新的文献求助10
7秒前
7秒前
今天不学习明天变垃圾完成签到,获得积分10
7秒前
8秒前
8秒前
布布完成签到,获得积分10
9秒前
一独白发布了新的文献求助10
9秒前
周周完成签到 ,获得积分10
9秒前
淡然完成签到,获得积分10
10秒前
明理小土豆完成签到,获得积分10
10秒前
刘国建郭菱香完成签到,获得积分10
10秒前
嘤嘤嘤完成签到,获得积分10
10秒前
九川应助粱自中采纳,获得10
10秒前
无辜之卉完成签到,获得积分10
11秒前
无花果应助Island采纳,获得10
11秒前
11秒前
SHDeathlock发布了新的文献求助200
12秒前
Owen应助醒醒采纳,获得10
12秒前
无心的代桃完成签到,获得积分10
13秒前
追寻代真完成签到,获得积分10
13秒前
晓兴兴完成签到,获得积分10
13秒前
leon发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762