亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Model-Heterogeneous Semi-Supervised Federated Learning for Medical Image Segmentation

计算机科学 个性化 分割 注释 任务(项目管理) 图像分割 人工智能 机器学习 数据挖掘 情报检索 万维网 管理 经济
作者
Yuxi Ma,Jiacheng Wang,Jing Yang,Liansheng Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (5): 1804-1815 被引量:13
标识
DOI:10.1109/tmi.2023.3348982
摘要

Medical image segmentation is crucial in clinical diagnosis, helping physicians identify and analyze medical conditions. However, this task is often accompanied by challenges like sensitive data, privacy concerns, and expensive annotations. Current research focuses on personalized collaborative training of medical segmentation systems, ignoring that obtaining segmentation annotations is time-consuming and laborious. Achieving a perfect balance between annotation cost and segmentation performance while ensuring local model personalization has become a valuable direction. Therefore, this study introduces a novel Model-Heterogeneous Semi-Supervised Federated (HSSF) Learning framework. It proposes Regularity Condensation and Regularity Fusion to transfer autonomously selective knowledge to ensure the personalization between sites. In addition, to efficiently utilize unlabeled data and reduce the annotation burden, it proposes a Self-Assessment (SA) module and a Reliable Pseudo-Label Generation (RPG) module. The SA module generates self-assessment confidence in real-time based on model performance, and the RPG module generates reliable pseudo-label based on SA confidence. We evaluate our model separately on the Skin Lesion and Polyp Lesion datasets. The results show that our model performs better than other methods characterized by heterogeneity. Moreover, it exhibits highly commendable performance even in homogeneous designs, most notably in region-based metrics. The full range of resources can be readily accessed through the designated repository located at HSSF(github.com) on the platform of GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Virtual应助科研通管家采纳,获得20
13秒前
慕青应助科研通管家采纳,获得10
13秒前
Virtual应助科研通管家采纳,获得20
13秒前
1分钟前
2分钟前
flyingpig完成签到,获得积分10
3分钟前
leaolf应助flyingpig采纳,获得10
3分钟前
leaolf应助flyingpig采纳,获得10
3分钟前
Virtual应助科研通管家采纳,获得10
4分钟前
Virtual应助科研通管家采纳,获得10
4分钟前
香蕉觅云应助宝贝采纳,获得10
4分钟前
4分钟前
宝贝发布了新的文献求助10
4分钟前
5分钟前
蒙豆儿发布了新的文献求助10
5分钟前
eeven完成签到 ,获得积分10
5分钟前
彭于晏应助蒙豆儿采纳,获得10
5分钟前
英姑应助蒙豆儿采纳,获得10
5分钟前
李联洪应助科研通管家采纳,获得20
6分钟前
打打应助John采纳,获得10
6分钟前
Able完成签到,获得积分10
6分钟前
搜集达人应助宝贝采纳,获得10
7分钟前
zsmj23完成签到 ,获得积分0
7分钟前
7分钟前
宝贝发布了新的文献求助10
8分钟前
CodeCraft应助科研通管家采纳,获得10
8分钟前
我是老大应助科研通管家采纳,获得10
8分钟前
yyds举报xdd求助涉嫌违规
8分钟前
sofardli发布了新的文献求助10
8分钟前
sofardli完成签到,获得积分10
8分钟前
9分钟前
蒙豆儿发布了新的文献求助10
9分钟前
9分钟前
孙孙发布了新的文献求助10
9分钟前
9分钟前
yyw发布了新的文献求助10
9分钟前
zhao完成签到,获得积分10
9分钟前
黑大侠完成签到 ,获得积分0
10分钟前
深度精分患者完成签到,获得积分10
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582150
求助须知:如何正确求助?哪些是违规求助? 3999965
关于积分的说明 12381933
捐赠科研通 3674852
什么是DOI,文献DOI怎么找? 2025403
邀请新用户注册赠送积分活动 1059180
科研通“疑难数据库(出版商)”最低求助积分说明 945782