Tandem catalysis for CO2 conversion to higher alcohols: A review

串联 催化作用 合成气 烯烃纤维 化学 生化工程 原材料 过程(计算) 组合化学 工艺工程 纳米技术 有机化学 计算机科学 材料科学 工程类 复合材料 操作系统
作者
Yiming He,Fabian Müller,Regina Palkovits,Feng Zeng,Chalachew Mebrahtu
出处
期刊:Applied Catalysis B-environmental [Elsevier BV]
卷期号:345: 123663-123663 被引量:61
标识
DOI:10.1016/j.apcatb.2023.123663
摘要

In recent years, due to the substantial emission of CO2, global warming has become more severe, and there is an urgent need to develop technologies to reduce greenhouse gas CO2 emissions. Converting CO2 into higher alcohols is a promising process, as it not only produces valuable chemicals but also utilizes CO2 as feedstock. Currently, most reported catalytic approaches are based on direct hydrogenation of CO2 to synthesize higher alcohols. However, the synthesis of higher alcohols involves multiple steps, requiring catalysts with multiple functional sites and their synergistic interactions are crucial. Nevertheless, controlling catalysts at the nanoscale poses challenges, hindering the design of efficient multi-site catalysts. An alternative approach worth considering is to perform a tandem of multiple well-established catalytic reactions (e.g., methanol synthesis, CO2-Fischer-Tropsch-Synthesis, RWGS, syngas conversion, olefin hydration, etc.) to indirectly achieve the conversion of CO2 into higher alcohols, instead of direct CO2 hydrogenation. Therefore, in this review, these alternative strategies of higher alcohols synthesis are discussed, and their potential is evaluated. First, thermodynamic analysis, the selective adjustment strategies, and the current challenges faced for direct CO2 hydrogenation are introduced. Then, physical integration of multiple catalysts as a feasible strategy to endow the catalyst with multifunctional properties is discussed. Subsequently, several feasible routes of CO2 conversion into higher alcohols and the advanced catalysts employed for each pathway are summarized. Finally, merits and limitations of the different approaches are provided, emphasizing the great potential the tandem reaction strategy holds for the efficient synthesis of higher alcohols by CO2 conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyp7028完成签到,获得积分10
刚刚
王孝松发布了新的文献求助10
1秒前
陈昭琼发布了新的文献求助10
1秒前
研友_VZG64n完成签到,获得积分10
1秒前
LIUY发布了新的文献求助10
1秒前
enen发布了新的文献求助10
2秒前
2秒前
2秒前
清韵微风完成签到,获得积分10
2秒前
雨晴发布了新的文献求助10
3秒前
Jasper应助uu白采纳,获得10
4秒前
4秒前
化身孤岛的鲸完成签到 ,获得积分10
4秒前
Duha完成签到,获得积分10
5秒前
5秒前
5秒前
上上签完成签到,获得积分10
5秒前
醉熏的雁完成签到 ,获得积分10
6秒前
情怀应助Gao采纳,获得10
6秒前
NanNan626发布了新的文献求助10
6秒前
6秒前
杭紫雪完成签到,获得积分10
6秒前
Re完成签到,获得积分10
6秒前
温柔的中蓝完成签到,获得积分10
6秒前
Akim应助暴躁的小蘑菇采纳,获得10
7秒前
懒羊羊完成签到,获得积分10
7秒前
繁荣的凡双完成签到,获得积分10
7秒前
momo完成签到,获得积分10
7秒前
8秒前
科研通AI6应助笑傲江湖采纳,获得30
8秒前
量子星尘发布了新的文献求助10
8秒前
mingxuan完成签到,获得积分10
9秒前
《子非鱼》完成签到,获得积分10
9秒前
cccc完成签到,获得积分10
9秒前
浮游应助Benliu采纳,获得10
9秒前
10秒前
benbenx完成签到,获得积分10
10秒前
Loooong应助猕猴桃采纳,获得10
10秒前
希望天下0贩的0应助xie采纳,获得10
10秒前
李林鑫完成签到 ,获得积分10
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5151604
求助须知:如何正确求助?哪些是违规求助? 4347231
关于积分的说明 13536167
捐赠科研通 4189937
什么是DOI,文献DOI怎么找? 2297805
邀请新用户注册赠送积分活动 1298127
关于科研通互助平台的介绍 1242778