数学
巴拿赫空间
希尔伯特空间
可数集
纯数学
无限维向量函数
空格(标点符号)
数学分析
摄动(天文学)
Banach流形
Lp空间
物理
语言学
哲学
量子力学
作者
Xiaofei Cao,Guowei Dai,Siyu Gao,Qingbo Liu
标识
DOI:10.1016/j.jmaa.2023.128027
摘要
Let f and g be two even functionals defined on the Banach space X. For any r>0, we establish the existence of a denumerable number of critical values of g on Mr(f):={x∈X:f(x)=r}. These critical values are stable–they do not disappear under small perturbation by functionals which may not be even. Our results extend the corresponding ones of Krasnoselskii's in the Hilbert space. Some applications of our abstract theorems are also presented.
科研通智能强力驱动
Strongly Powered by AbleSci AI