Vibration-based structural damage localization through a discriminant analysis strategy with cepstral coefficients

计算机科学 线性判别分析 结构健康监测 人工智能 模式识别(心理学) 判别式 鉴定(生物学) 倒谱 振动 机器学习 领域(数学) 工程类 结构工程 数学 生物 物理 量子力学 植物 纯数学
作者
Lechen Li,Adrian Brügger,Raimondo Betti,Zhenzhong Shen,Lei Gan
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:23 (6): 3921-3942 被引量:1
标识
DOI:10.1177/14759217241231034
摘要

Over the past decades, Vibration-Based Methods (VBMs) have consistently exhibited exceptional effectiveness in the field of Structural Health Monitoring when it comes to assessing structural damage in both civil and mechanical structures. Recently, the progress made in data-driven strategies for localizing structural damage through the VBMs has resulted in substantial benefits. These advanced strategies not only enable an efficient decision-making process but also provide precise identification of repair locations for monitored structures. Importantly, they achieve this without the inherent complexity and computational burden typically associated with traditional model-based methods. In this study, an innovative data-driven method for localizing and quantifying structural damage is proposed. The method is developed on the basis of the principles of Linear Discriminant Analysis (LDA) and a newly devised modeling strategy that utilizes the power cepstral coefficients extracted from the structural acceleration response. The developed LDA model is able to highlight the local structural characteristics (i.e., mode shape-related information) embedded in the cepstral coefficients in the LDA latent space. Based on the highlighted local characteristics of the cepstral coefficients, a statistical pattern recognition strategy is proposed to effectively conduct the quantification and localization of structural damage. The proposed damage localization method is designed to function in a completely unsupervised-learning manner, which eliminates the requirement for the model to have access to any prior knowledge or information regarding structural damage during the training phase. The proposed method has been validated by both numerical simulations and experimental data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气的梦露完成签到,获得积分10
1秒前
leena发布了新的文献求助20
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
FL应助科研通管家采纳,获得10
1秒前
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
2秒前
酷波er应助纯真丹秋采纳,获得10
2秒前
2秒前
Hello应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
故意的梦之完成签到,获得积分20
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
田様应助修水县1个科研人采纳,获得30
3秒前
4秒前
木子李发布了新的文献求助10
4秒前
4秒前
4秒前
我是老大应助baobeikk采纳,获得10
4秒前
乔乔兔发布了新的文献求助10
5秒前
成就灵波完成签到,获得积分10
5秒前
沉默安波发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
友好的小鸭子完成签到,获得积分10
6秒前
背后丹烟完成签到,获得积分10
6秒前
研友_VZG7GZ应助S77采纳,获得10
7秒前
7秒前
7秒前
ylf完成签到 ,获得积分10
8秒前
Raven完成签到,获得积分10
8秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652722
求助须知:如何正确求助?哪些是违规求助? 3216855
关于积分的说明 9714154
捐赠科研通 2924569
什么是DOI,文献DOI怎么找? 1601790
邀请新用户注册赠送积分活动 754553
科研通“疑难数据库(出版商)”最低求助积分说明 733156