Channel-Robust Radio Frequency Fingerprint Identification for Cellular Uplink LTE Devices

电信线路 计算机科学 计算机网络 无线电频率 指纹(计算) 频道(广播) 蜂窝无线电 电子工程 电信 基站 工程类 计算机安全
作者
Linning Peng,Haichuan Peng,Hua Fu,Ming Liu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (10): 17154-17169 被引量:1
标识
DOI:10.1109/jiot.2024.3358904
摘要

Radio frequency fingerprint identification (RFFI) is a promising authentication mechanism for physical layer security. In this paper, we thoroughly validate the feasibility of using RFFI for cellular long-term evolution (LTE) devices. Firstly, we conduct simulations to examine the subtle impacts of hardware impairments on LTE signals. The simulated results reveal that I/Q imbalance and power amplifier non-linearity introduce significant distortions within in-band spectrum, forming unique hardware fingerprints. We then leverage the strong channel correlation between adjacent subcarriers and separate the channel-robust radio frequency fingerprints (RFF) from uplink demodulation reference signal (DMRS) in Msg3. Subsequently, we construct a hybrid feature matrix to serve as input for a shallow long short-term memory (LSTM) network. Due to the more effective channel mitigation strategy, our method outperforms three benchmarks in terms of classification accuracy under cross-scenario testing. Additionally, we explore the impacts of bandwidth configuration on RFFI, and experimental findings demonstrate that LTE terminals will exhibit more distinct RFF when occupying a larger number of physical resource blocks (RB) during transmission. We also investigate the stability of RFF towards frequency band variations. The results suggest that there will be a significant accuracy loss under training with one band but testing with another, indicating the importance of frequency band-independent feature extraction in practical environments. Lastly, we expose four key implications to pave the way for exploring corresponding solutions. To the best of our knowledge, it is the first performance evaluation of the RFFI system on different frequency bands and with multiple bandwidth configurations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高手应助好像是肥阳采纳,获得10
刚刚
1秒前
zzzmmm发布了新的文献求助10
1秒前
2秒前
酷波er应助跳跃的千凡采纳,获得10
2秒前
辣辣发布了新的文献求助10
2秒前
迷路的茗茗完成签到,获得积分10
2秒前
谷六发布了新的文献求助10
2秒前
情怀应助我爱科研采纳,获得10
3秒前
漂亮谷雪完成签到,获得积分10
3秒前
3秒前
wang1030发布了新的文献求助50
3秒前
4秒前
Genetrix应助Jenny采纳,获得30
5秒前
6秒前
lijiajun发布了新的文献求助10
6秒前
6秒前
6秒前
litieniu完成签到 ,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
核桃发布了新的文献求助10
8秒前
彭于晏应助茶米采纳,获得10
8秒前
和谐无敌完成签到,获得积分10
8秒前
帝释天I发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
wyq完成签到,获得积分10
10秒前
东方傲儿发布了新的文献求助10
10秒前
10秒前
11秒前
仁爱的觅夏完成签到,获得积分10
11秒前
BEMJ发布了新的文献求助30
11秒前
zmc_297完成签到,获得积分10
11秒前
裤里发布了新的文献求助10
11秒前
fjhsg25发布了新的文献求助10
11秒前
隐形曼青应助LXL采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133