Channel-Robust Radio Frequency Fingerprint Identification for Cellular Uplink LTE Devices

电信线路 计算机科学 计算机网络 无线电频率 指纹(计算) 频道(广播) 蜂窝无线电 电子工程 电信 基站 工程类 计算机安全
作者
Linning Peng,Haichuan Peng,Hua Fu,Ming Liu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (10): 17154-17169 被引量:1
标识
DOI:10.1109/jiot.2024.3358904
摘要

Radio frequency fingerprint identification (RFFI) is a promising authentication mechanism for physical layer security. In this paper, we thoroughly validate the feasibility of using RFFI for cellular long-term evolution (LTE) devices. Firstly, we conduct simulations to examine the subtle impacts of hardware impairments on LTE signals. The simulated results reveal that I/Q imbalance and power amplifier non-linearity introduce significant distortions within in-band spectrum, forming unique hardware fingerprints. We then leverage the strong channel correlation between adjacent subcarriers and separate the channel-robust radio frequency fingerprints (RFF) from uplink demodulation reference signal (DMRS) in Msg3. Subsequently, we construct a hybrid feature matrix to serve as input for a shallow long short-term memory (LSTM) network. Due to the more effective channel mitigation strategy, our method outperforms three benchmarks in terms of classification accuracy under cross-scenario testing. Additionally, we explore the impacts of bandwidth configuration on RFFI, and experimental findings demonstrate that LTE terminals will exhibit more distinct RFF when occupying a larger number of physical resource blocks (RB) during transmission. We also investigate the stability of RFF towards frequency band variations. The results suggest that there will be a significant accuracy loss under training with one band but testing with another, indicating the importance of frequency band-independent feature extraction in practical environments. Lastly, we expose four key implications to pave the way for exploring corresponding solutions. To the best of our knowledge, it is the first performance evaluation of the RFFI system on different frequency bands and with multiple bandwidth configurations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JING发布了新的文献求助10
1秒前
1秒前
DOCTORLI发布了新的文献求助10
1秒前
lyy发布了新的文献求助10
2秒前
小马甲应助永日安宁采纳,获得10
3秒前
Jasper应助张星特采纳,获得10
3秒前
姜汁树完成签到 ,获得积分10
4秒前
4秒前
科研菜鸟完成签到 ,获得积分10
5秒前
MILK发布了新的文献求助10
6秒前
科研小白完成签到,获得积分10
7秒前
Lucas应助yy采纳,获得10
8秒前
科研通AI2S应助要减肥雪枫采纳,获得10
10秒前
大模型应助有风的晴天采纳,获得10
11秒前
慕青应助儒雅海之采纳,获得10
11秒前
13秒前
完美世界应助111采纳,获得10
15秒前
英俊的铭应助DOCTORLI采纳,获得10
17秒前
19秒前
lyy完成签到,获得积分20
19秒前
22秒前
26秒前
26秒前
29秒前
111发布了新的文献求助10
29秒前
32秒前
DOCTORLI发布了新的文献求助10
33秒前
张星特发布了新的文献求助10
34秒前
wangkun090121发布了新的文献求助10
37秒前
万能图书馆应助ccccchen采纳,获得10
37秒前
孤独秋凌发布了新的文献求助10
38秒前
所所应助科研通管家采纳,获得10
42秒前
隐形曼青应助科研通管家采纳,获得30
42秒前
43秒前
43秒前
善学以致用应助yy采纳,获得10
45秒前
47秒前
JING发布了新的文献求助10
48秒前
Fan完成签到,获得积分10
49秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Divinatorische Texte II. Opferschau-Omina 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358826
求助须知:如何正确求助?哪些是违规求助? 2981909
关于积分的说明 8701218
捐赠科研通 2663575
什么是DOI,文献DOI怎么找? 1458528
科研通“疑难数据库(出版商)”最低求助积分说明 675158
邀请新用户注册赠送积分活动 666196