Scheduling for the Flexible Job-Shop Problem with a Dynamic Number of Machines Using Deep Reinforcement Learning

强化学习 计算机科学 人工智能 作业车间调度 钢筋 调度(生产过程) 工作车间 工业工程 运筹学 机器学习 数学优化 流水车间调度 数学 工程类 心理学 社会心理学 地铁列车时刻表 操作系统
作者
Yu‐Hung Chang,Chien‐Hung Liu,Shingchern D. You
出处
期刊:Information [MDPI AG]
卷期号:15 (2): 82-82 被引量:2
标识
DOI:10.3390/info15020082
摘要

The dynamic flexible job-shop problem (DFJSP) is a realistic and challenging problem that many production plants face. As the product line becomes more complex, the machines may suddenly break down or resume service, so we need a dynamic scheduling framework to cope with the changing number of machines over time. This issue has been rarely addressed in the literature. In this paper, we propose an improved learning-to-dispatch (L2D) model to generate a reasonable and good schedule to minimize the makespan. We formulate a DFJSP as a disjunctive graph and use graph neural networks (GINs) to embed the disjunctive graph into states for the agent to learn. The use of GINs enables the model to handle the dynamic number of machines and to effectively generalize to large-scale instances. The learning agent is a multi-layer feedforward network trained with a reinforcement learning algorithm, called proximal policy optimization. We trained the model on small-sized problems and tested it on various-sized problems. The experimental results show that our model outperforms the existing best priority dispatching rule algorithms, such as shortest processing time, most work remaining, flow due date per most work remaining, and most operations remaining. The results verify that the model has a good generalization capability and, thus, demonstrate its effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
范海辛发布了新的文献求助10
2秒前
JamesPei应助zhoull采纳,获得10
2秒前
3秒前
shinysparrow应助科研通管家采纳,获得10
3秒前
3秒前
shinysparrow应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
方断秋完成签到,获得积分10
5秒前
蔺子凡完成签到,获得积分10
5秒前
5秒前
7秒前
zhou完成签到 ,获得积分10
8秒前
ohh发布了新的文献求助10
8秒前
从容芮应助DMAP采纳,获得10
8秒前
12345完成签到 ,获得积分10
9秒前
Hang发布了新的文献求助10
10秒前
mmssdd完成签到,获得积分10
13秒前
Yan完成签到,获得积分10
13秒前
科研通AI5应助天天下雨采纳,获得10
14秒前
15秒前
研友_VZG7GZ应助PANYIAO采纳,获得10
15秒前
冰姗完成签到,获得积分10
16秒前
啊强完成签到 ,获得积分10
17秒前
17秒前
18秒前
如意凝雁发布了新的文献求助10
19秒前
桐桐应助Hang采纳,获得10
19秒前
Leah_7完成签到,获得积分10
21秒前
21秒前
bigger.b完成签到,获得积分10
21秒前
22秒前
MY2720完成签到,获得积分10
24秒前
24秒前
晓晓发布了新的文献求助10
24秒前
曾经的背包完成签到 ,获得积分10
25秒前
yi发布了新的文献求助10
27秒前
范海辛完成签到,获得积分10
27秒前
pigeon完成签到,获得积分10
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3651973
求助须知:如何正确求助?哪些是违规求助? 3216162
关于积分的说明 9711019
捐赠科研通 2923965
什么是DOI,文献DOI怎么找? 1601432
邀请新用户注册赠送积分活动 754160
科研通“疑难数据库(出版商)”最低求助积分说明 732987