已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ego Vehicle Trajectory Prediction Based on Time-Feature Encoding and Physics-Intention Decoding

弹道 解码方法 背景(考古学) 编码(内存) 计算机科学 特征(语言学) 人工智能 一般化 控制理论(社会学) 算法 控制(管理) 数学 古生物学 数学分析 语言学 哲学 物理 天文 生物
作者
Ziyu Zhang,Chunyan Wang,Wanzhong Zhao,Mingchun Cao,Jinqiang Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 6527-6542 被引量:6
标识
DOI:10.1109/tits.2023.3344718
摘要

In the stage of man-machine cooperative driving, accurately predicting the trajectory of the ego vehicle can help intelligent system understand future risk and adjust the control authority of the man-machine, thereby improving the performance of the man-machine system and eliminating man-machine conflicts. However, existing high-performance trajectory prediction methods are more focused on fully autonomous vehicles, and it is difficult to deal with the problem of driving trajectory prediction with different risks when the driver is in the loop. So, an ego vehicle trajectory prediction method based on time-feature encoding and physics-intention decoding (TFE-PID) is proposed. Through the bidirectional enhancement of the encoding and decoding process, it can accurately predict the trajectory of the ego vehicle by using only the state data of the vehicle and the driver. In the encoding stage, time and feature information are used for dual encoding, which makes the amount of information carried in the context vector used for decoding more abundant. In the decoding stage, context vector, physical prediction data, and driver's intention are used to control the flow of information in the network, which enables the model to converge in a direction that is more consistent with the physical characteristics of the vehicle and driver's intention. The experimental results show that TFE-PID can accurately predict the trajectory of the ego vehicle under different risky driving behaviors of drivers, and has good prediction stability and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粽子完成签到,获得积分10
2秒前
chen发布了新的文献求助10
3秒前
沉钧发布了新的文献求助10
5秒前
123456777完成签到 ,获得积分0
7秒前
FashionBoy应助MoonByMoon采纳,获得10
7秒前
我是老大应助开放道天采纳,获得10
8秒前
winnie完成签到,获得积分10
11秒前
顺顺顺应助孤独的小玉采纳,获得10
11秒前
lu2025发布了新的文献求助10
12秒前
葛子文完成签到 ,获得积分10
12秒前
在水一方应助沉钧采纳,获得10
12秒前
1nooooo完成签到 ,获得积分10
15秒前
精明玲完成签到 ,获得积分10
16秒前
LJL完成签到 ,获得积分10
16秒前
笨蛋搞笑女完成签到 ,获得积分10
17秒前
zhdhh完成签到,获得积分10
17秒前
大模型应助大喵采纳,获得10
19秒前
suge完成签到 ,获得积分10
19秒前
粥粥完成签到,获得积分10
19秒前
Leofar完成签到 ,获得积分10
20秒前
张凌完成签到,获得积分10
24秒前
简单寻冬完成签到,获得积分10
24秒前
24秒前
24秒前
wanci应助科研通管家采纳,获得10
25秒前
华仔应助科研通管家采纳,获得10
25秒前
小二郎应助科研通管家采纳,获得10
25秒前
xu应助科研通管家采纳,获得30
25秒前
yyds应助科研通管家采纳,获得10
25秒前
Criminology34应助科研通管家采纳,获得10
25秒前
28秒前
28秒前
灰灰发布了新的文献求助10
28秒前
科研通AI2S应助落后的蚂蚁采纳,获得10
29秒前
30秒前
简单寻冬发布了新的文献求助10
31秒前
坦率的尔冬完成签到,获得积分10
33秒前
pikachu完成签到,获得积分10
33秒前
ufofly730完成签到 ,获得积分10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639380
求助须知:如何正确求助?哪些是违规求助? 4747904
关于积分的说明 15006208
捐赠科研通 4797525
什么是DOI,文献DOI怎么找? 2563511
邀请新用户注册赠送积分活动 1522544
关于科研通互助平台的介绍 1482245