Ego Vehicle Trajectory Prediction Based on Time-Feature Encoding and Physics-Intention Decoding

弹道 解码方法 背景(考古学) 编码(内存) 计算机科学 特征(语言学) 人工智能 一般化 控制理论(社会学) 算法 控制(管理) 数学 物理 数学分析 哲学 古生物学 生物 语言学 天文
作者
Ziyu Zhang,Chunyan Wang,Wanzhong Zhao,Mingchun Cao,Jinqiang Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 6527-6542 被引量:6
标识
DOI:10.1109/tits.2023.3344718
摘要

In the stage of man-machine cooperative driving, accurately predicting the trajectory of the ego vehicle can help intelligent system understand future risk and adjust the control authority of the man-machine, thereby improving the performance of the man-machine system and eliminating man-machine conflicts. However, existing high-performance trajectory prediction methods are more focused on fully autonomous vehicles, and it is difficult to deal with the problem of driving trajectory prediction with different risks when the driver is in the loop. So, an ego vehicle trajectory prediction method based on time-feature encoding and physics-intention decoding (TFE-PID) is proposed. Through the bidirectional enhancement of the encoding and decoding process, it can accurately predict the trajectory of the ego vehicle by using only the state data of the vehicle and the driver. In the encoding stage, time and feature information are used for dual encoding, which makes the amount of information carried in the context vector used for decoding more abundant. In the decoding stage, context vector, physical prediction data, and driver's intention are used to control the flow of information in the network, which enables the model to converge in a direction that is more consistent with the physical characteristics of the vehicle and driver's intention. The experimental results show that TFE-PID can accurately predict the trajectory of the ego vehicle under different risky driving behaviors of drivers, and has good prediction stability and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助周周采纳,获得10
1秒前
2秒前
神灯完成签到 ,获得积分10
2秒前
现代的雪糕完成签到,获得积分10
3秒前
3秒前
神勇毛衣发布了新的文献求助30
3秒前
东方完成签到 ,获得积分10
3秒前
丘比特应助可乐采纳,获得30
3秒前
Chaha发布了新的文献求助10
3秒前
哈皮完成签到,获得积分20
3秒前
3秒前
3秒前
zongyuan0131发布了新的文献求助10
4秒前
然r完成签到,获得积分10
4秒前
O已w时o完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
Katze完成签到,获得积分10
5秒前
沐夕完成签到,获得积分10
5秒前
Linking发布了新的文献求助10
5秒前
6秒前
哈哈发布了新的文献求助10
6秒前
6秒前
梁帅哥完成签到,获得积分10
7秒前
pk完成签到,获得积分10
7秒前
7秒前
Nnn发布了新的文献求助10
7秒前
选择题全对完成签到,获得积分10
7秒前
个性翠风发布了新的文献求助10
8秒前
8秒前
香蕉觅云应助Katze采纳,获得10
8秒前
呵呵呵呵发布了新的文献求助10
8秒前
李静完成签到,获得积分10
8秒前
又下涟漪小雨完成签到,获得积分20
8秒前
Orange应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
zt发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589038
求助须知:如何正确求助?哪些是违规求助? 4671863
关于积分的说明 14789964
捐赠科研通 4627369
什么是DOI,文献DOI怎么找? 2532053
邀请新用户注册赠送积分活动 1500695
关于科研通互助平台的介绍 1468382