Ego Vehicle Trajectory Prediction Based on Time-Feature Encoding and Physics-Intention Decoding

弹道 解码方法 背景(考古学) 编码(内存) 计算机科学 特征(语言学) 人工智能 一般化 控制理论(社会学) 算法 控制(管理) 数学 古生物学 数学分析 语言学 哲学 物理 天文 生物
作者
Ziyu Zhang,Chunyan Wang,Wanzhong Zhao,Mingchun Cao,Jinqiang Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 6527-6542 被引量:6
标识
DOI:10.1109/tits.2023.3344718
摘要

In the stage of man-machine cooperative driving, accurately predicting the trajectory of the ego vehicle can help intelligent system understand future risk and adjust the control authority of the man-machine, thereby improving the performance of the man-machine system and eliminating man-machine conflicts. However, existing high-performance trajectory prediction methods are more focused on fully autonomous vehicles, and it is difficult to deal with the problem of driving trajectory prediction with different risks when the driver is in the loop. So, an ego vehicle trajectory prediction method based on time-feature encoding and physics-intention decoding (TFE-PID) is proposed. Through the bidirectional enhancement of the encoding and decoding process, it can accurately predict the trajectory of the ego vehicle by using only the state data of the vehicle and the driver. In the encoding stage, time and feature information are used for dual encoding, which makes the amount of information carried in the context vector used for decoding more abundant. In the decoding stage, context vector, physical prediction data, and driver's intention are used to control the flow of information in the network, which enables the model to converge in a direction that is more consistent with the physical characteristics of the vehicle and driver's intention. The experimental results show that TFE-PID can accurately predict the trajectory of the ego vehicle under different risky driving behaviors of drivers, and has good prediction stability and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
听梦完成签到,获得积分10
1秒前
轻松的语海完成签到,获得积分20
1秒前
坦率灵槐发布了新的文献求助10
1秒前
小行星发布了新的文献求助20
1秒前
科研通AI6应助悦耳的襄采纳,获得30
2秒前
sss关闭了sss文献求助
2秒前
在望发布了新的文献求助10
3秒前
FashionBoy应助开心的西瓜采纳,获得10
3秒前
amape发布了新的文献求助10
3秒前
科研通AI2S应助lk采纳,获得10
3秒前
4秒前
乐乐应助娇气的寒梅采纳,获得10
4秒前
5秒前
无限续发布了新的文献求助20
6秒前
TYQ发布了新的文献求助10
7秒前
7秒前
Racheal完成签到,获得积分20
7秒前
慕青应助dddd采纳,获得10
8秒前
Owen应助灵巧的沛凝采纳,获得10
8秒前
隐形曼青应助甜甜画笔采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
英姑应助缓慢平蓝采纳,获得50
11秒前
12秒前
gengen应助Nene采纳,获得10
13秒前
chenqiumu应助Nene采纳,获得30
13秒前
OeO完成签到 ,获得积分10
13秒前
14秒前
14秒前
Akim应助大马猴采纳,获得10
14秒前
15秒前
AIA发布了新的文献求助30
15秒前
15秒前
淡抹青春完成签到,获得积分10
15秒前
李佳芮完成签到,获得积分10
15秒前
16秒前
情怀应助amape采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468720
求助须知:如何正确求助?哪些是违规求助? 4572113
关于积分的说明 14333499
捐赠科研通 4498847
什么是DOI,文献DOI怎么找? 2464734
邀请新用户注册赠送积分活动 1453361
关于科研通互助平台的介绍 1427921