Ego Vehicle Trajectory Prediction Based on Time-Feature Encoding and Physics-Intention Decoding

弹道 解码方法 背景(考古学) 编码(内存) 计算机科学 特征(语言学) 人工智能 一般化 控制理论(社会学) 算法 控制(管理) 数学 物理 数学分析 哲学 古生物学 生物 语言学 天文
作者
Ziyu Zhang,Chunyan Wang,Wanzhong Zhao,Mingchun Cao,Jinqiang Liu
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 6527-6542 被引量:4
标识
DOI:10.1109/tits.2023.3344718
摘要

In the stage of man-machine cooperative driving, accurately predicting the trajectory of the ego vehicle can help intelligent system understand future risk and adjust the control authority of the man-machine, thereby improving the performance of the man-machine system and eliminating man-machine conflicts. However, existing high-performance trajectory prediction methods are more focused on fully autonomous vehicles, and it is difficult to deal with the problem of driving trajectory prediction with different risks when the driver is in the loop. So, an ego vehicle trajectory prediction method based on time-feature encoding and physics-intention decoding (TFE-PID) is proposed. Through the bidirectional enhancement of the encoding and decoding process, it can accurately predict the trajectory of the ego vehicle by using only the state data of the vehicle and the driver. In the encoding stage, time and feature information are used for dual encoding, which makes the amount of information carried in the context vector used for decoding more abundant. In the decoding stage, context vector, physical prediction data, and driver's intention are used to control the flow of information in the network, which enables the model to converge in a direction that is more consistent with the physical characteristics of the vehicle and driver's intention. The experimental results show that TFE-PID can accurately predict the trajectory of the ego vehicle under different risky driving behaviors of drivers, and has good prediction stability and generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娜娜发布了新的文献求助10
1秒前
郝56发布了新的文献求助10
1秒前
诚心谷南完成签到,获得积分10
1秒前
2秒前
apathy完成签到,获得积分10
2秒前
卢yi完成签到,获得积分20
2秒前
3秒前
hellosci666完成签到,获得积分10
3秒前
水水发布了新的文献求助10
3秒前
夏冰发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
Owen应助勤奋一刀采纳,获得10
4秒前
4秒前
5秒前
5秒前
Cheney完成签到,获得积分10
6秒前
无情的沛岚完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7788完成签到,获得积分10
7秒前
搜集达人应助zf采纳,获得10
7秒前
7秒前
木火灰完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
王张李高发布了新的文献求助10
9秒前
张星星完成签到 ,获得积分10
9秒前
luo完成签到,获得积分10
10秒前
10秒前
韩霖完成签到,获得积分10
10秒前
11秒前
Owen应助xu采纳,获得10
11秒前
英姑应助xu采纳,获得10
11秒前
徐徐徐发布了新的文献求助10
11秒前
11秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958507
求助须知:如何正确求助?哪些是违规求助? 3504843
关于积分的说明 11120375
捐赠科研通 3236122
什么是DOI,文献DOI怎么找? 1788663
邀请新用户注册赠送积分活动 871249
科研通“疑难数据库(出版商)”最低求助积分说明 802642