DCS-Gait: A Class-Level Domain Adaptation Approach for Cross-Scene and Cross-State Gait Recognition Using Wi-Fi CSI

计算机科学 步态 生物识别 人工智能 匹配(统计) 鉴定(生物学) 计算机视觉 模式识别(心理学) 物理医学与康复 医学 数学 统计 植物 生物
作者
Ying Liang,Wenjie Wu,H. Li,Xiaojun Chang,Xiaojiang Chen,Jinye Peng,Pengfei Xu
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 2997-3007 被引量:2
标识
DOI:10.1109/tifs.2024.3356827
摘要

Wi-Fi CSI-based gait recognition is a non-intrusive passive biometric identification technology that has garnered significant attention in the fields of security and smart furniture due to its user-friendly nature. However, in practical application scenarios, gait recognition systems face the challenge of reliably identifying subjects across different scenes or states. To overcome this challenge, this paper proposes DCS-Gait, a domain adaptation solution for cross-scene and cross-state gait recognition based on Wi-Fi CSI. DCS-Gait leverages a novel data distribution measurement called Cross-Attention Metric to align the class-level data distribution differences, enabling the model to learn invariant features across scenes and states. To address the issue of data annotation, we employ a pre-training method to obtain pseudo labels for the dataset. Additionally, a combined matching filtering technique is utilized to generate high-quality pseudo labels for unrecognized data, which can be further employed for supervised model training. We evaluated the effectiveness of DCS-Gait on a large test set consisting of 34 subjects, 2 scenes, and 3 different states, and the results demonstrate significant improvements over the state-of-the-art baselines in both cross-scene and cross-state gait recognition tasks. DCS-Gait provides a promising and reliable solution for accurate cross-scene and cross-state gait recognition in real-world settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张慧仪完成签到 ,获得积分20
刚刚
不舍天真发布了新的文献求助10
刚刚
dyfsj完成签到,获得积分10
1秒前
NexusExplorer应助WANG采纳,获得10
1秒前
IlIIlIlIIIllI给玖a的求助进行了留言
1秒前
cricket完成签到,获得积分10
1秒前
1秒前
炎魔之王拉格纳罗斯完成签到,获得积分10
1秒前
852应助树袋熊和考拉采纳,获得10
2秒前
yutou完成签到,获得积分10
2秒前
俏俏完成签到,获得积分10
3秒前
乂氼完成签到 ,获得积分10
3秒前
大方百招完成签到,获得积分10
3秒前
3秒前
ku_zhang完成签到,获得积分10
4秒前
闪闪灯泡完成签到 ,获得积分10
4秒前
卢浩完成签到,获得积分10
4秒前
大力猫崽完成签到 ,获得积分10
4秒前
4秒前
4秒前
YYT1991完成签到,获得积分10
4秒前
传奇3应助zzzwln采纳,获得10
5秒前
hclee完成签到,获得积分10
5秒前
yzkyg完成签到,获得积分10
6秒前
7秒前
7秒前
吴糖完成签到,获得积分10
7秒前
111发布了新的文献求助10
7秒前
wangsai0532发布了新的文献求助10
7秒前
缓慢天抒完成签到 ,获得积分10
7秒前
静咿默完成签到,获得积分10
7秒前
幽壑之潜蛟应助水凝胶采纳,获得10
8秒前
黑森林完成签到,获得积分10
8秒前
超人完成签到,获得积分10
8秒前
博qb完成签到,获得积分10
8秒前
9秒前
KONG完成签到,获得积分10
9秒前
小树叶完成签到,获得积分10
10秒前
小郑完成签到,获得积分10
10秒前
nteicu发布了新的文献求助10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Taxonomic and phylogenetic evidence reveal two new Volvariella species (Agaricales, Volvariellaceae) from Denmark 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445420
求助须知:如何正确求助?哪些是违规求助? 3041448
关于积分的说明 8985460
捐赠科研通 2730053
什么是DOI,文献DOI怎么找? 1497339
科研通“疑难数据库(出版商)”最低求助积分说明 692179
邀请新用户注册赠送积分活动 689745