Temporal Knowledge Graph Question Answering Models Enhanced with GAT

计算机科学 答疑 知识图 图形 人工智能 理论计算机科学
作者
Wenjuan Jiang,Yi Guo,Jiaojiao Fu
标识
DOI:10.1109/bigdata59044.2023.10386891
摘要

Temporal Knowledge Graph Question Answering (TKGQA) task aims to find an entity or timestamp from a temporal knowledge graph to answer temporal reasoning questions. However, most existing models fail to capture the implicit temporal information in the questions, resulting in weak performance when handling complex temporal reasoning tasks. To address this issue, this paper proposes a novel TKGQA model called GATQR, which integrates graph attention mechanism. The model utilizes a pre-trained temporal knowledge base in the form of quadruples and introduces Graph Attention Network (GAT) to effectively capture the implicit temporal information in the questions. By integrating with relation representations trained by the RoBERTa, it further enhances the temporal relationship representation in the queries. Finally, this representation is combined with the pre-trained TKG embeddings to predict the entity or timestamp with the highest score as the answer. Experimental results on the largest benchmark dataset CronQuestion demonstrate that compared to baseline models such as CronKGQA, EntityQR, and TempoQR-Soft, the GATQR achieves significant improvements in Hits@l results for handling complex and temporal question types, with increases of 35% and 13%, 18% and 9%, and 9% and 3%, respectively. These results validate the effectiveness and superiority of the GATQR model in capturing implicit temporal information and enhancing complex reasoning capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助高兴松鼠采纳,获得10
刚刚
喜悦幻灵完成签到 ,获得积分10
1秒前
1秒前
gogoyoco发布了新的文献求助10
2秒前
xn201120发布了新的文献求助10
2秒前
英俊的铭应助西门访天采纳,获得30
3秒前
H2CO3发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
幸福大白发布了新的文献求助10
6秒前
爆米花应助Leoniko采纳,获得10
6秒前
6秒前
6秒前
李星完成签到,获得积分20
6秒前
7秒前
8秒前
8秒前
9秒前
赘婿应助YJ888采纳,获得10
10秒前
surong发布了新的文献求助10
11秒前
Shelby发布了新的文献求助10
11秒前
dyc238100发布了新的文献求助10
12秒前
树精发布了新的文献求助10
12秒前
liii发布了新的文献求助10
12秒前
12秒前
火柴盒完成签到,获得积分10
13秒前
如此这般发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
幸福大白发布了新的文献求助30
16秒前
Akitten关注了科研通微信公众号
16秒前
16秒前
闾丘剑封发布了新的文献求助10
18秒前
天天快乐应助Shelby采纳,获得10
18秒前
18秒前
华仔应助xn201120采纳,获得10
19秒前
木子李发布了新的文献求助10
19秒前
搬砖小土妞完成签到,获得积分20
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989510
求助须知:如何正确求助?哪些是违规求助? 3531756
关于积分的说明 11254536
捐赠科研通 3270255
什么是DOI,文献DOI怎么找? 1804947
邀请新用户注册赠送积分活动 882113
科研通“疑难数据库(出版商)”最低求助积分说明 809176