Temporal Knowledge Graph Question Answering Models Enhanced with GAT

计算机科学 答疑 知识图 图形 人工智能 理论计算机科学
作者
Wenjuan Jiang,Yi Guo,Jiaojiao Fu
标识
DOI:10.1109/bigdata59044.2023.10386891
摘要

Temporal Knowledge Graph Question Answering (TKGQA) task aims to find an entity or timestamp from a temporal knowledge graph to answer temporal reasoning questions. However, most existing models fail to capture the implicit temporal information in the questions, resulting in weak performance when handling complex temporal reasoning tasks. To address this issue, this paper proposes a novel TKGQA model called GATQR, which integrates graph attention mechanism. The model utilizes a pre-trained temporal knowledge base in the form of quadruples and introduces Graph Attention Network (GAT) to effectively capture the implicit temporal information in the questions. By integrating with relation representations trained by the RoBERTa, it further enhances the temporal relationship representation in the queries. Finally, this representation is combined with the pre-trained TKG embeddings to predict the entity or timestamp with the highest score as the answer. Experimental results on the largest benchmark dataset CronQuestion demonstrate that compared to baseline models such as CronKGQA, EntityQR, and TempoQR-Soft, the GATQR achieves significant improvements in Hits@l results for handling complex and temporal question types, with increases of 35% and 13%, 18% and 9%, and 9% and 3%, respectively. These results validate the effectiveness and superiority of the GATQR model in capturing implicit temporal information and enhancing complex reasoning capabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我爱看文献是假的完成签到,获得积分10
2秒前
JW完成签到,获得积分10
3秒前
小星历险记完成签到 ,获得积分10
4秒前
5秒前
躺平girl完成签到,获得积分10
5秒前
Bran应助Koi采纳,获得20
6秒前
明天见发布了新的文献求助10
6秒前
10秒前
10秒前
8R60d8应助烟酒不离生采纳,获得10
12秒前
8R60d8应助烟酒不离生采纳,获得10
12秒前
8R60d8应助烟酒不离生采纳,获得10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
橡树果完成签到 ,获得积分10
14秒前
完美小蘑菇应助潇湘雪月采纳,获得10
14秒前
张wx_100完成签到,获得积分10
16秒前
chenjingjing发布了新的文献求助10
16秒前
19秒前
illi发布了新的文献求助10
20秒前
22秒前
23秒前
Ava应助大青山采纳,获得10
24秒前
24秒前
2116564发布了新的文献求助10
26秒前
27秒前
婵婵发布了新的文献求助10
28秒前
ASZXDW发布了新的文献求助20
28秒前
29秒前
Orange应助1235656646采纳,获得10
30秒前
2311发布了新的文献求助10
31秒前
EDSS完成签到,获得积分10
31秒前
勤奋大地完成签到,获得积分10
33秒前
35秒前
2311完成签到,获得积分20
38秒前
共享精神应助小木安华采纳,获得10
40秒前
q1356478314应助2116564采纳,获得10
40秒前
40秒前
刘佳冉完成签到,获得积分10
40秒前
星期八发布了新的文献求助10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174