Multiple marine algae identification based on three-dimensional fluorescence spectroscopy and multi-label convolutional neural network

卷积神经网络 藻类 模式识别(心理学) 人工智能 生物系统 计算机科学 鉴定(生物学) 化学 植物 生物
作者
Ruizhuo Li,Limin Gao,Guojun Wu,Jing Dong
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:311: 123938-123938 被引量:14
标识
DOI:10.1016/j.saa.2024.123938
摘要

Accurate identification of algal populations plays a pivotal role in monitoring seawater quality. Fluorescence-based techniques are effective tools for quickly identifying different algae. However, multiple coexisting algae and their similar photosynthetic pigments can constrain the efficacy of fluorescence methods. This study introduces a multi-label classification model that combines a specific Excitation-Emission matric convolutional neural network (EEM-CNN) with three-dimensional (3D) fluorescence spectroscopy to detect single and mixed algal samples. Spectral data can be input directly into the model without transforming into images. Rectangular convolutional kernels and double convolutional layers are applied to enhance the extraction of balanced and comprehensive spectral features for accurate classification. A dataset comprising 3D fluorescence spectra from eight distinct algae species representing six different algal classes was obtained, preprocessed, and augmented to create input data for the classification model. The classification model was trained and validated using 4448 sets of test samples and 60 sets of test samples, resulting in an accuracy of 0.883 and an F1 score of 0.925. This model exhibited the highest recognition accuracy in both single and mixed algae samples, outperforming comparative methods such as ML-kNN and N-PLS-DA. Furthermore, the classification results were extended to three different algae species and mixed samples of skeletonema costatum to assess the impact of spectral similarity on multi-label classification performance. The developed classification models demonstrated robust performance across samples with varying concentrations and growth stages, highlighting CNN's potential as a promising tool for the precise identification of marine algae.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lyx1997发布了新的文献求助10
刚刚
我爱科研发布了新的文献求助10
1秒前
qianzi完成签到 ,获得积分10
1秒前
1秒前
口口完成签到,获得积分10
1秒前
香蕉觅云应助mei采纳,获得10
2秒前
xinzezoe发布了新的文献求助10
2秒前
哎嘿发布了新的文献求助10
2秒前
阿瓜发布了新的文献求助10
2秒前
奋斗的冬瓜完成签到,获得积分20
2秒前
谈笑间发布了新的文献求助10
2秒前
2秒前
完美世界应助梅天豪采纳,获得10
2秒前
gbtj123发布了新的文献求助10
2秒前
Wianiu完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
清爽冰露发布了新的文献求助10
5秒前
廿一雨发布了新的文献求助10
5秒前
一目发布了新的文献求助10
5秒前
5秒前
Paranoid完成签到 ,获得积分10
5秒前
5秒前
我爱科研完成签到,获得积分10
6秒前
仁爱的秋天完成签到 ,获得积分10
6秒前
菜鸟完成签到,获得积分20
6秒前
6秒前
6秒前
6秒前
Hello应助zy采纳,获得10
7秒前
骆驼顶顶完成签到,获得积分20
7秒前
7秒前
研友_VZG7GZ应助孙友浩采纳,获得10
7秒前
偷马桶发布了新的文献求助10
7秒前
领导范儿应助suuu采纳,获得10
8秒前
8秒前
长情半邪完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430157
求助须知:如何正确求助?哪些是违规求助? 4543397
关于积分的说明 14186899
捐赠科研通 4461523
什么是DOI,文献DOI怎么找? 2446207
邀请新用户注册赠送积分活动 1437454
关于科研通互助平台的介绍 1414381