亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiple marine algae identification based on three-dimensional fluorescence spectroscopy and multi-label convolutional neural network

卷积神经网络 藻类 模式识别(心理学) 人工智能 生物系统 计算机科学 鉴定(生物学) 化学 植物 生物
作者
Ruizhuo Li,Limin Gao,Guojun Wu,Jing Dong
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:311: 123938-123938 被引量:14
标识
DOI:10.1016/j.saa.2024.123938
摘要

Accurate identification of algal populations plays a pivotal role in monitoring seawater quality. Fluorescence-based techniques are effective tools for quickly identifying different algae. However, multiple coexisting algae and their similar photosynthetic pigments can constrain the efficacy of fluorescence methods. This study introduces a multi-label classification model that combines a specific Excitation-Emission matric convolutional neural network (EEM-CNN) with three-dimensional (3D) fluorescence spectroscopy to detect single and mixed algal samples. Spectral data can be input directly into the model without transforming into images. Rectangular convolutional kernels and double convolutional layers are applied to enhance the extraction of balanced and comprehensive spectral features for accurate classification. A dataset comprising 3D fluorescence spectra from eight distinct algae species representing six different algal classes was obtained, preprocessed, and augmented to create input data for the classification model. The classification model was trained and validated using 4448 sets of test samples and 60 sets of test samples, resulting in an accuracy of 0.883 and an F1 score of 0.925. This model exhibited the highest recognition accuracy in both single and mixed algae samples, outperforming comparative methods such as ML-kNN and N-PLS-DA. Furthermore, the classification results were extended to three different algae species and mixed samples of skeletonema costatum to assess the impact of spectral similarity on multi-label classification performance. The developed classification models demonstrated robust performance across samples with varying concentrations and growth stages, highlighting CNN's potential as a promising tool for the precise identification of marine algae.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
量子星尘发布了新的文献求助10
7秒前
玉潇发布了新的文献求助10
21秒前
26秒前
28秒前
朴素千亦完成签到 ,获得积分10
29秒前
WhiteT发布了新的文献求助10
32秒前
虚拟的元风完成签到 ,获得积分10
36秒前
小马甲应助yunshui采纳,获得10
41秒前
林子鸿完成签到 ,获得积分10
44秒前
昭荃完成签到 ,获得积分0
46秒前
46秒前
48秒前
Jasper应助焰火在采纳,获得10
50秒前
yunshui发布了新的文献求助10
54秒前
充电宝应助yzzzz采纳,获得10
57秒前
winnie完成签到,获得积分10
1分钟前
1分钟前
mark707完成签到,获得积分10
1分钟前
默默善愁发布了新的文献求助10
1分钟前
1分钟前
yzzzz发布了新的文献求助10
1分钟前
yzzzz完成签到,获得积分10
1分钟前
1分钟前
maher完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
movoandy应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
阿俊完成签到 ,获得积分10
2分钟前
哈基米的吉米哈完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
123发布了新的文献求助10
2分钟前
小鸣完成签到 ,获得积分10
2分钟前
章鱼完成签到,获得积分10
2分钟前
liufool完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418269
求助须知:如何正确求助?哪些是违规求助? 4534001
关于积分的说明 14142950
捐赠科研通 4450267
什么是DOI,文献DOI怎么找? 2441139
邀请新用户注册赠送积分活动 1432887
关于科研通互助平台的介绍 1410210