Multiple marine algae identification based on three-dimensional fluorescence spectroscopy and multi-label convolutional neural network

卷积神经网络 藻类 模式识别(心理学) 人工智能 生物系统 计算机科学 鉴定(生物学) 化学 植物 生物
作者
Ruizhuo Li,Limin Gao,Guojun Wu,Jing Dong
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:311: 123938-123938 被引量:14
标识
DOI:10.1016/j.saa.2024.123938
摘要

Accurate identification of algal populations plays a pivotal role in monitoring seawater quality. Fluorescence-based techniques are effective tools for quickly identifying different algae. However, multiple coexisting algae and their similar photosynthetic pigments can constrain the efficacy of fluorescence methods. This study introduces a multi-label classification model that combines a specific Excitation-Emission matric convolutional neural network (EEM-CNN) with three-dimensional (3D) fluorescence spectroscopy to detect single and mixed algal samples. Spectral data can be input directly into the model without transforming into images. Rectangular convolutional kernels and double convolutional layers are applied to enhance the extraction of balanced and comprehensive spectral features for accurate classification. A dataset comprising 3D fluorescence spectra from eight distinct algae species representing six different algal classes was obtained, preprocessed, and augmented to create input data for the classification model. The classification model was trained and validated using 4448 sets of test samples and 60 sets of test samples, resulting in an accuracy of 0.883 and an F1 score of 0.925. This model exhibited the highest recognition accuracy in both single and mixed algae samples, outperforming comparative methods such as ML-kNN and N-PLS-DA. Furthermore, the classification results were extended to three different algae species and mixed samples of skeletonema costatum to assess the impact of spectral similarity on multi-label classification performance. The developed classification models demonstrated robust performance across samples with varying concentrations and growth stages, highlighting CNN's potential as a promising tool for the precise identification of marine algae.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
erg应助你好采纳,获得20
2秒前
无花果应助马大帅采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得30
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
传奇3应助令狐凝阳采纳,获得10
4秒前
LeimingDai发布了新的文献求助20
5秒前
8秒前
9秒前
11秒前
朱婷完成签到 ,获得积分10
11秒前
Sakura发布了新的文献求助10
12秒前
Owen应助WoooU采纳,获得10
13秒前
朵拉完成签到,获得积分10
13秒前
唐棠发布了新的文献求助10
14秒前
坦率灵槐完成签到,获得积分10
15秒前
悠悠发布了新的文献求助10
17秒前
ljact完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
小马完成签到,获得积分10
20秒前
am完成签到,获得积分10
21秒前
21秒前
hmhu完成签到,获得积分10
21秒前
Dako完成签到,获得积分10
22秒前
24秒前
华北走地鸡完成签到,获得积分10
24秒前
唐棠完成签到,获得积分10
25秒前
hmhu发布了新的文献求助10
25秒前
魏煜佳完成签到,获得积分10
25秒前
hyx发布了新的文献求助20
26秒前
WoooU发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419471
求助须知:如何正确求助?哪些是违规求助? 4534713
关于积分的说明 14146406
捐赠科研通 4451316
什么是DOI,文献DOI怎么找? 2441690
邀请新用户注册赠送积分活动 1433244
关于科研通互助平台的介绍 1410560