Multiple marine algae identification based on three-dimensional fluorescence spectroscopy and multi-label convolutional neural network

卷积神经网络 藻类 模式识别(心理学) 人工智能 生物系统 计算机科学 鉴定(生物学) 化学 植物 生物
作者
Ruizhuo Li,Limin Gao,Guojun Wu,Jing Dong
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:311: 123938-123938 被引量:14
标识
DOI:10.1016/j.saa.2024.123938
摘要

Accurate identification of algal populations plays a pivotal role in monitoring seawater quality. Fluorescence-based techniques are effective tools for quickly identifying different algae. However, multiple coexisting algae and their similar photosynthetic pigments can constrain the efficacy of fluorescence methods. This study introduces a multi-label classification model that combines a specific Excitation-Emission matric convolutional neural network (EEM-CNN) with three-dimensional (3D) fluorescence spectroscopy to detect single and mixed algal samples. Spectral data can be input directly into the model without transforming into images. Rectangular convolutional kernels and double convolutional layers are applied to enhance the extraction of balanced and comprehensive spectral features for accurate classification. A dataset comprising 3D fluorescence spectra from eight distinct algae species representing six different algal classes was obtained, preprocessed, and augmented to create input data for the classification model. The classification model was trained and validated using 4448 sets of test samples and 60 sets of test samples, resulting in an accuracy of 0.883 and an F1 score of 0.925. This model exhibited the highest recognition accuracy in both single and mixed algae samples, outperforming comparative methods such as ML-kNN and N-PLS-DA. Furthermore, the classification results were extended to three different algae species and mixed samples of skeletonema costatum to assess the impact of spectral similarity on multi-label classification performance. The developed classification models demonstrated robust performance across samples with varying concentrations and growth stages, highlighting CNN's potential as a promising tool for the precise identification of marine algae.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
清韵微风发布了新的文献求助10
3秒前
老高发布了新的文献求助10
4秒前
4秒前
ztt完成签到,获得积分10
5秒前
7秒前
7秒前
许迪发布了新的文献求助30
7秒前
8秒前
parpate发布了新的文献求助10
8秒前
9秒前
Stacey完成签到,获得积分10
10秒前
张起灵完成签到,获得积分10
10秒前
12秒前
12秒前
阅读文献发布了新的文献求助10
13秒前
共享精神应助孙勇发采纳,获得10
15秒前
优雅莞发布了新的文献求助10
16秒前
斯文败类应助如常采纳,获得10
16秒前
向阳发布了新的文献求助10
17秒前
11发布了新的文献求助10
18秒前
19秒前
砰砰彭发布了新的文献求助20
20秒前
爆米花应助王多肉采纳,获得10
21秒前
山南驳回了打打应助
23秒前
Chaos完成签到,获得积分10
23秒前
23秒前
遇上就这样吧应助kento采纳,获得50
24秒前
25秒前
25秒前
26秒前
27秒前
梨花月应助司空元正采纳,获得10
27秒前
28秒前
学fei了吗完成签到,获得积分10
28秒前
11完成签到,获得积分10
30秒前
30秒前
浮游应助咿呀呀采纳,获得10
30秒前
孙勇发发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助10
32秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5135008
求助须知:如何正确求助?哪些是违规求助? 4335582
关于积分的说明 13507290
捐赠科研通 4173211
什么是DOI,文献DOI怎么找? 2288286
邀请新用户注册赠送积分活动 1289005
关于科研通互助平台的介绍 1230049