Multiple marine algae identification based on three-dimensional fluorescence spectroscopy and multi-label convolutional neural network

卷积神经网络 藻类 模式识别(心理学) 人工智能 生物系统 计算机科学 鉴定(生物学) 化学 植物 生物
作者
Ruizhuo Li,Limin Gao,Guojun Wu,Jing Dong
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:311: 123938-123938 被引量:14
标识
DOI:10.1016/j.saa.2024.123938
摘要

Accurate identification of algal populations plays a pivotal role in monitoring seawater quality. Fluorescence-based techniques are effective tools for quickly identifying different algae. However, multiple coexisting algae and their similar photosynthetic pigments can constrain the efficacy of fluorescence methods. This study introduces a multi-label classification model that combines a specific Excitation-Emission matric convolutional neural network (EEM-CNN) with three-dimensional (3D) fluorescence spectroscopy to detect single and mixed algal samples. Spectral data can be input directly into the model without transforming into images. Rectangular convolutional kernels and double convolutional layers are applied to enhance the extraction of balanced and comprehensive spectral features for accurate classification. A dataset comprising 3D fluorescence spectra from eight distinct algae species representing six different algal classes was obtained, preprocessed, and augmented to create input data for the classification model. The classification model was trained and validated using 4448 sets of test samples and 60 sets of test samples, resulting in an accuracy of 0.883 and an F1 score of 0.925. This model exhibited the highest recognition accuracy in both single and mixed algae samples, outperforming comparative methods such as ML-kNN and N-PLS-DA. Furthermore, the classification results were extended to three different algae species and mixed samples of skeletonema costatum to assess the impact of spectral similarity on multi-label classification performance. The developed classification models demonstrated robust performance across samples with varying concentrations and growth stages, highlighting CNN's potential as a promising tool for the precise identification of marine algae.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
由于完成签到,获得积分10
刚刚
星辰大海应助Silole采纳,获得10
刚刚
邪恶土拨鼠应助yeyeye采纳,获得10
1秒前
2秒前
噗噗发布了新的文献求助30
2秒前
3秒前
5秒前
lcj完成签到,获得积分20
6秒前
123完成签到,获得积分20
6秒前
H哇完成签到,获得积分10
6秒前
大米完成签到 ,获得积分10
6秒前
万能图书馆应助zzr采纳,获得10
7秒前
SciKid524完成签到 ,获得积分10
7秒前
小马甲应助hxx采纳,获得10
8秒前
9秒前
12秒前
hou发布了新的文献求助10
12秒前
CodeCraft应助Silole采纳,获得10
12秒前
无聊的老姆完成签到 ,获得积分10
13秒前
称心仇血发布了新的文献求助10
14秒前
小葵完成签到,获得积分10
15秒前
15秒前
左岸发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
liyongqing完成签到,获得积分20
18秒前
18秒前
希望天下0贩的0应助277采纳,获得10
18秒前
麦当劳信徒完成签到,获得积分10
20秒前
huajuan完成签到 ,获得积分10
20秒前
十六完成签到 ,获得积分10
20秒前
史莱莱莱姆完成签到,获得积分10
22秒前
23秒前
24秒前
ZGYX发布了新的文献求助10
24秒前
25秒前
梓然完成签到,获得积分10
25秒前
Owen应助Silole采纳,获得10
26秒前
可靠小懒虫完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373703
求助须知:如何正确求助?哪些是违规求助? 4499730
关于积分的说明 14007113
捐赠科研通 4406667
什么是DOI,文献DOI怎么找? 2420557
邀请新用户注册赠送积分活动 1413377
关于科研通互助平台的介绍 1389933