Multiple marine algae identification based on three-dimensional fluorescence spectroscopy and multi-label convolutional neural network

卷积神经网络 藻类 模式识别(心理学) 人工智能 生物系统 计算机科学 鉴定(生物学) 环境科学 植物 生物
作者
Ruizhuo Li,Limin Gao,Guojun Wu,Jing Dong
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:: 123938-123938 被引量:3
标识
DOI:10.1016/j.saa.2024.123938
摘要

Accurate identification of algal populations plays a pivotal role in monitoring seawater quality. Fluorescence-based techniques are effective tools for quickly identifying different algae. However, multiple coexisting algae and their similar photosynthetic pigments can constrain the efficacy of fluorescence methods. This study introduces a multi-label classification model that combines a specific Excitation-Emission matric convolutional neural network (EEM-CNN) with three-dimensional (3D) fluorescence spectroscopy to detect single and mixed algal samples. Spectral data can be input directly into the model without transforming into images. Rectangular convolutional kernels and double convolutional layers are applied to enhance the extraction of balanced and comprehensive spectral features for accurate classification. A dataset comprising 3D fluorescence spectra from eight distinct algae species representing six different algal classes was obtained, preprocessed, and augmented to create input data for the classification model. The classification model was trained and validated using 4448 sets of test samples and 60 sets of test samples, resulting in an accuracy of 0.883 and an F1 score of 0.925. This model exhibited the highest recognition accuracy in both single and mixed algae samples, outperforming comparative methods such as ML-kNN and N-PLS-DA. Furthermore, the classification results were extended to three different algae species and mixed samples of skeletonema costatum to assess the impact of spectral similarity on multi-label classification performance. The developed classification models demonstrated robust performance across samples with varying concentrations and growth stages, highlighting CNN's potential as a promising tool for the precise identification of marine algae.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助cym666666采纳,获得10
刚刚
山丘应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Singularity发布了新的文献求助10
2秒前
在水一方应助无限的时光采纳,获得10
2秒前
CQ完成签到,获得积分10
3秒前
Jemezs发布了新的文献求助10
4秒前
4秒前
5秒前
skyrmion完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
8秒前
向春山完成签到,获得积分10
9秒前
123发布了新的文献求助80
12秒前
大个应助科研顺利采纳,获得10
12秒前
12秒前
小丛雨发布了新的文献求助10
14秒前
14秒前
李博士发布了新的文献求助10
15秒前
17秒前
北极星发布了新的文献求助30
18秒前
Guofenglei发布了新的文献求助10
18秒前
GET发布了新的文献求助10
19秒前
20秒前
22秒前
孤月寒沙影关注了科研通微信公众号
25秒前
jwb711发布了新的文献求助20
25秒前
读研顺利完成签到 ,获得积分10
26秒前
wei完成签到,获得积分10
27秒前
27秒前
yana完成签到,获得积分10
29秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139135
求助须知:如何正确求助?哪些是违规求助? 2790050
关于积分的说明 7793436
捐赠科研通 2446426
什么是DOI,文献DOI怎么找? 1301124
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102