Comparison of Ethos template-based planning and AI-based dose prediction: General performance, patient optimality, and limitations

风气 直肠 人工智能 核医学 计算机科学 机器学习 医学 数学 内科学 哲学 语言学
作者
Benjamin Roberfroid,Ana M. Barragán‐Montero,D. Dechambre,Edmond Sterpin,John A. Lee,Xavier Geets
出处
期刊:Physica Medica [Elsevier]
卷期号:116: 103178-103178 被引量:7
标识
DOI:10.1016/j.ejmp.2023.103178
摘要

Ethos proposes a template-based automatic dose planning (Etb) for online adaptive radiotherapy. This study evaluates the general performance of Etb for prostate cancer, as well as the ability to generate patient-optimal plans, by comparing it with another state-of-the-art automatic planning method, i.e., deep learning dose prediction followed by dose mimicking (DP + DM).General performances and capability to produce patient-optimal plan were investigated through two studies: Study-S1 generated plans for 45 patients using our initial Ethos clinical goals template (EG_init), and compared them to manually generated plans (MG). For study-S2, 10 patients which showed poor performances at study-S1 were selected. S2 compared the quality of plans generated with four different methods: 1) Ethos initial template (EG_init_selected), 2) Ethos updated template-based on S1 results (EG_upd_selected), 3) DP + DM, and 4) MG plans.EG_init plans showed satisfactory performance for dose level above 50 Gy: reported mean metrics differences (EG_init minus MG) never exceeded 0.6 %. However, lower dose levels showed loosely optimized metrics, mean differences for V30Gy to rectum and V20Gy to anal canal were of 6.6 % and 13.0 %. EG_init_selected showed amplified differences in V30Gy to rectum and V20Gy to anal canal: 8.5 % and 16.9 %, respectively. These dropped to 5.7 % and 11.5 % for EG_upd_selected plans but strongly increased V60Gy to rectum for 2 patients. DP + DM plans achieved differences of 3.4 % and 4.6 % without compromising any V60Gy.General performances of Etb were satisfactory. However, optimizing with template of goals might be limiting for some complex cases. Over our test patients, DP + DM outperformed the Etb approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wpbxyms发布了新的文献求助10
刚刚
刚刚
DENG发布了新的文献求助10
1秒前
6秒前
二甲亚砜2022完成签到,获得积分10
7秒前
8秒前
鸭鸭完成签到,获得积分20
10秒前
Sober完成签到 ,获得积分10
11秒前
rayzhanghl完成签到,获得积分10
11秒前
小咸鱼完成签到 ,获得积分10
13秒前
L文甬应助sishwn采纳,获得50
13秒前
18秒前
Ella完成签到,获得积分10
18秒前
19秒前
彪壮的小玉应助Qianyu采纳,获得150
23秒前
meng发布了新的文献求助10
24秒前
娇娇完成签到,获得积分20
25秒前
29秒前
玩命的紫南完成签到 ,获得积分10
31秒前
ding应助meng采纳,获得10
33秒前
zyyin完成签到,获得积分10
35秒前
欢快的芹菜完成签到,获得积分10
39秒前
42秒前
44秒前
45秒前
xiaoyemao发布了新的文献求助10
47秒前
赘婿应助简单初曼采纳,获得10
47秒前
47秒前
在水一方发布了新的文献求助10
49秒前
Hello应助科研通管家采纳,获得10
50秒前
Hello应助科研通管家采纳,获得10
50秒前
50秒前
乐乐应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
完美世界应助科研通管家采纳,获得10
50秒前
星辰大海应助科研通管家采纳,获得10
50秒前
50秒前
田様应助科研通管家采纳,获得10
50秒前
共享精神应助科研通管家采纳,获得10
50秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164190
求助须知:如何正确求助?哪些是违规求助? 2814916
关于积分的说明 7906988
捐赠科研通 2474500
什么是DOI,文献DOI怎么找? 1317533
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228