Comparison of Ethos template-based planning and AI-based dose prediction: General performance, patient optimality, and limitations

风气 直肠 人工智能 核医学 计算机科学 机器学习 医学 数学 内科学 哲学 语言学
作者
Benjamin Roberfroid,Ana M. Barragán‐Montero,D. Dechambre,Edmond Sterpin,John A. Lee,Xavier Geets
出处
期刊:Physica Medica [Elsevier]
卷期号:116: 103178-103178 被引量:10
标识
DOI:10.1016/j.ejmp.2023.103178
摘要

Ethos proposes a template-based automatic dose planning (Etb) for online adaptive radiotherapy. This study evaluates the general performance of Etb for prostate cancer, as well as the ability to generate patient-optimal plans, by comparing it with another state-of-the-art automatic planning method, i.e., deep learning dose prediction followed by dose mimicking (DP + DM).General performances and capability to produce patient-optimal plan were investigated through two studies: Study-S1 generated plans for 45 patients using our initial Ethos clinical goals template (EG_init), and compared them to manually generated plans (MG). For study-S2, 10 patients which showed poor performances at study-S1 were selected. S2 compared the quality of plans generated with four different methods: 1) Ethos initial template (EG_init_selected), 2) Ethos updated template-based on S1 results (EG_upd_selected), 3) DP + DM, and 4) MG plans.EG_init plans showed satisfactory performance for dose level above 50 Gy: reported mean metrics differences (EG_init minus MG) never exceeded 0.6 %. However, lower dose levels showed loosely optimized metrics, mean differences for V30Gy to rectum and V20Gy to anal canal were of 6.6 % and 13.0 %. EG_init_selected showed amplified differences in V30Gy to rectum and V20Gy to anal canal: 8.5 % and 16.9 %, respectively. These dropped to 5.7 % and 11.5 % for EG_upd_selected plans but strongly increased V60Gy to rectum for 2 patients. DP + DM plans achieved differences of 3.4 % and 4.6 % without compromising any V60Gy.General performances of Etb were satisfactory. However, optimizing with template of goals might be limiting for some complex cases. Over our test patients, DP + DM outperformed the Etb approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神可馨完成签到 ,获得积分10
刚刚
Hangerli发布了新的文献求助20
刚刚
HealthyCH完成签到,获得积分10
刚刚
li完成签到,获得积分10
1秒前
2秒前
ononon发布了新的文献求助10
4秒前
4秒前
liu完成签到,获得积分10
6秒前
LWJ发布了新的文献求助10
7秒前
8秒前
大反应釜完成签到,获得积分10
8秒前
TT发布了新的文献求助10
11秒前
Jenny发布了新的文献求助10
13秒前
13秒前
完美凝竹发布了新的文献求助10
13秒前
我是站长才怪应助细腻沅采纳,获得10
14秒前
JG完成签到 ,获得积分10
14秒前
hhh完成签到,获得积分20
14秒前
科研通AI5应助想瘦的海豹采纳,获得10
15秒前
随性完成签到 ,获得积分10
15秒前
自由的信仰完成签到,获得积分10
16秒前
18秒前
19秒前
19秒前
夏夏发布了新的文献求助10
20秒前
打打应助Hangerli采纳,获得10
22秒前
完美凝竹完成签到,获得积分10
23秒前
zfzf0422发布了新的文献求助10
24秒前
蜘蛛道理完成签到 ,获得积分10
24秒前
冷傲迎梦发布了新的文献求助10
25秒前
852应助MEME采纳,获得10
25秒前
Godzilla发布了新的文献求助10
25秒前
大模型应助咕噜仔采纳,获得10
26秒前
蒋时晏应助pharmstudent采纳,获得30
26秒前
27秒前
忘羡222发布了新的文献求助20
28秒前
魏伯安发布了新的文献求助10
28秒前
29秒前
不爱吃糖完成签到,获得积分10
29秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824