材料科学
超级电容器
电容
电化学
电极
煅烧
功率密度
电解质
异质结
制作
电流密度
化学工程
比表面积
光电子学
纳米技术
复合材料
化学
热力学
物理化学
生物化学
功率(物理)
物理
替代医学
量子力学
病理
工程类
催化作用
医学
作者
Zhifang Feng,Bona Zhang,Peijun Ji,Ruiyuan Hu,Bin Gao,Xiaofeng Wang,Yulan Meng,Xue‐Zhi Song,Zhenquan Tan
出处
期刊:ACS applied energy materials
[American Chemical Society]
日期:2023-08-29
卷期号:6 (17): 8808-8817
被引量:5
标识
DOI:10.1021/acsaem.3c01278
摘要
Bi2O3 is increasingly used in supercapacitors because of its high theoretical specific capacitance, but poor inherent conductivity and poor ion diffusion limit its actual capacitance. Therefore, the rational design of the surface and structure of Bi2O3 is the key to improve the specific capacitance of Bi2O3. Here, we report the fabrication of high-performance negative electrodes from Bi2O2CO3 nanosheets wrapped around Bi2O3 arrays (Cu foam@Bi2O3@Bi2O2CO3) by a combination of electrical substitution, oxidative calcination, and hydrothermal methods. The realized Cu foam@Bi2O3@Bi2O2CO3 presents a surface cross-linked laminar structure, which shortens the electrolyte penetration path. The direct replacement growth of Bi on copper substrates to obtain subsequent composites allows for enhanced adhesion between the electrode material and the collector, facilitates charge transfer to the electrode material, and achieves ultrahigh loadings (13.2 mg cm–2). In addition, the constructed asymmetric supercapacitor has a maximum energy density of 1.6 mW h cm–2 (45.5 W h kg–1) at a power density of 6.2 mW cm–2 (175.9 W kg–1). This work provides a simple design strategy to enhance the electrochemical performance of Bi2O3.
科研通智能强力驱动
Strongly Powered by AbleSci AI