Anchor-free deep convolutional neural network for tracking and counting cotton seedlings and flowers

苗木 卷积神经网络 超参数 帧(网络) 帧速率 人工智能 探测器 跟踪(教育) 计算机科学 深度学习 计算机视觉 人工神经网络 模式识别(心理学) 数学 园艺 生物 电信 心理学 教育学
作者
Chenjiao Tan,Changying Li,Dongjian He,Huaibo Song
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:215: 108359-108359 被引量:7
标识
DOI:10.1016/j.compag.2023.108359
摘要

Accurate counting of plants and their organs in natural environments is essential for breeders and growers. For breeders, counting plants during the seedling stage aids in selecting genotypes with superior emergence rates, while for growers, it informs decisions about potential replanting. Meanwhile, counting specific plant organs, such as flowers, forecasts yields for different genotypes, offering insights into production levels. The overall goal of this study was to investigate a deep convolutional neural network-based tracking method, CenterTrack, for cotton seedling and flower counting from video frames. The network is extended from a customized CenterNet, which is an anchor-free object detector. CenterTrack predicts the detections of the current frame and displacements of detections between the previous frame and the current frame, which are used to associate the same object in consecutive frames. The modified CenterNet detector achieved high accuracy on both seedling and flower datasets with an overall AP50 of 0.962. The video tracking hyperparameters were optimized for each dataset using orthogonal tests. Experimental results showed that seedling and flower counts with optimized hyperparameters highly correlated with those of manual counts (R2 = 0.98 andR2 = 0.95) and the mean relative errors of 75 cotton seedling testing videos and 50 flower testing videos were 5.5 % and 10.8 %, respectively. An average counting speed of 20.4 frames per second was achieved with an input resolution of 1920 × 1080 pixels for both seedling and flower videos. The anchor-free deep convolution neural network-based tracking method provides automatic tracking and counting in video frames, which will significantly benefit plant breeding and crop management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Dasph7发布了新的文献求助10
刚刚
香雪若梅完成签到,获得积分10
1秒前
丙队长发布了新的文献求助10
3秒前
香雪若梅发布了新的文献求助10
5秒前
雨林完成签到,获得积分10
5秒前
彭于晏应助玉米大西瓜采纳,获得10
5秒前
太阳能之子完成签到,获得积分10
5秒前
模糊中正应助个性海菡采纳,获得30
6秒前
Rena发布了新的文献求助10
6秒前
神揽星辰入梦完成签到,获得积分10
6秒前
大个应助guochenggong采纳,获得10
6秒前
7秒前
要减肥的天奇完成签到,获得积分20
7秒前
Jenny应助柒柒采纳,获得10
7秒前
Akim应助善良的沛山采纳,获得10
7秒前
才下眉头完成签到,获得积分10
7秒前
wushshn完成签到,获得积分10
8秒前
iNk应助飘逸的幻灵采纳,获得10
8秒前
9秒前
调研昵称发布了新的文献求助10
9秒前
丙队长完成签到,获得积分10
9秒前
wzll完成签到,获得积分10
11秒前
11秒前
赘婿应助单薄的灵安采纳,获得10
11秒前
12秒前
MWN完成签到,获得积分10
12秒前
风趣的鸡翅完成签到 ,获得积分10
12秒前
13秒前
雨林发布了新的文献求助10
13秒前
123完成签到,获得积分20
13秒前
汉堡包应助闾丘博超采纳,获得10
13秒前
wzll发布了新的文献求助10
13秒前
阔达的乌冬面完成签到,获得积分10
13秒前
xintaihencha完成签到,获得积分20
13秒前
优雅安柏关注了科研通微信公众号
14秒前
15秒前
15秒前
cc发布了新的文献求助10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469346
求助须知:如何正确求助?哪些是违规求助? 3062465
关于积分的说明 9079074
捐赠科研通 2752760
什么是DOI,文献DOI怎么找? 1510621
科研通“疑难数据库(出版商)”最低求助积分说明 697925
邀请新用户注册赠送积分活动 697866