Fake news detection: Taxonomy and comparative study

计算机科学 分类 人工智能 分类学(生物学) 特征提取 机器学习 特征(语言学) 代表(政治) 数据挖掘 语言学 哲学 植物 政治 政治学 法学 生物
作者
Faramarz Farhangian,Rafael M. O. Cruz,George D. C. Cavalcanti
出处
期刊:Information Fusion [Elsevier]
卷期号:103: 102140-102140 被引量:17
标识
DOI:10.1016/j.inffus.2023.102140
摘要

The proliferation of social networks has presented a significant challenge in combating the pervasive issue of fake news within modern societies. Due to the large amount of information and news produced daily in text, audio, and video, the validation and verification of this information have become crucial tasks. Leveraging advancements in artificial intelligence, distinguishing between fake news and factual information through automatic fake news detection systems has become more feasible. Automatic fake news detection has been explored from diverse perspectives, employing various feature extraction and classification models. Nonetheless, empirical evaluations, categorization, and comparisons of existing techniques for handling this problem remain limited. In this paper, we revisit the definitions and perspectives of fake news and propose an updated taxonomy for the field based on multiple criteria: (1) Type of features used in fake news detection; (2) Fake news detection perspectives; (3) Feature representation methods; and (4) Classification approaches. Moreover, we conduct an extensive empirical study to evaluate several feature representation techniques and classification approaches based on accuracy and computational cost. Our experimental results demonstrate that the optimal feature extraction techniques vary depending on the characteristics of the dataset. Notably, context-dependent models based on transformer models consistently exhibit superior performance. Additionally, employing transformer models as feature extraction methods, rather than solely fine-tuning the network for the downstream task, improves overall performance. Through extensive error analysis, we identify that a combination of feature representation methods and classification algorithms, including classical ones, offer complementary aspects and should be considered for achieving better generalization performance while maintaining a relatively low computational cost. For further details, including source codes, figures, and datasets, please refer to our project's GitHub repository: [https://github.com/FFarhangian/Fake-news-detection-Comparative-Study].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐新惠完成签到 ,获得积分10
2秒前
深情安青应助张小哥12采纳,获得10
2秒前
HEIKU应助kissinger采纳,获得10
3秒前
HEIKU应助kissinger采纳,获得10
3秒前
蝼蚁王发布了新的文献求助10
3秒前
传奇3应助boss采纳,获得100
3秒前
等待巧曼完成签到,获得积分10
3秒前
syhjxk发布了新的文献求助10
3秒前
NagatoYuki完成签到,获得积分10
3秒前
4秒前
渠安完成签到,获得积分10
4秒前
简单的易云完成签到,获得积分10
4秒前
黄建雨发布了新的文献求助10
4秒前
匆匆那年完成签到,获得积分10
5秒前
5秒前
我是老大应助HHHH采纳,获得10
6秒前
joey完成签到,获得积分10
6秒前
6秒前
1a完成签到 ,获得积分10
7秒前
8秒前
8秒前
cff完成签到 ,获得积分10
8秒前
董大米完成签到,获得积分10
9秒前
restudy68完成签到,获得积分10
9秒前
欠虐宝宝完成签到 ,获得积分10
9秒前
可靠的碧凡完成签到 ,获得积分10
9秒前
友好凌柏完成签到 ,获得积分10
9秒前
nickel发布了新的文献求助10
10秒前
Tigher完成签到,获得积分10
10秒前
zq1992nl发布了新的文献求助10
11秒前
Rylynn发布了新的文献求助10
11秒前
磊磊猪完成签到,获得积分10
11秒前
无味完成签到 ,获得积分10
12秒前
lq完成签到,获得积分10
13秒前
ironsilica完成签到,获得积分10
13秒前
心心完成签到,获得积分10
14秒前
无辜念文完成签到,获得积分10
14秒前
缓慢的夕阳完成签到,获得积分10
15秒前
Endeavor完成签到,获得积分10
15秒前
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3253312
求助须知:如何正确求助?哪些是违规求助? 2895814
关于积分的说明 8288561
捐赠科研通 2564708
什么是DOI,文献DOI怎么找? 1392497
科研通“疑难数据库(出版商)”最低求助积分说明 652220
邀请新用户注册赠送积分活动 629484